Synlett 2017; 28(12): 1389-1393
DOI: 10.1055/s-0036-1588762
synpacts
© Georg Thieme Verlag Stuttgart · New York

Chemical Protein Synthesis through Selenocysteine Chemistry

Reem Mousa
a   Institute of chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel   Email: metanis@mail.huji.ac.il
,
Post Sai Reddy
a   Institute of chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel   Email: metanis@mail.huji.ac.il
b   Institut Européen de Chimie et Biologie 2, Rue Robert Escarpit 33607 Pessac Cedex, France
,
Norman Metanis*
a   Institute of chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel   Email: metanis@mail.huji.ac.il
› Author Affiliations
Further Information

Publication History

Received: 06 February 2017

Accepted after revision: 28 February 2017

Publication Date:
21 March 2017 (online)


Abstract

Methods for the preparation of small-to-medium-sized proteins by chemical protein synthesis have matured in recent years and proven valuable for protein science. Thanks to the many recent discoveries and developments in the field, proteins up to 300 amino acids can now be prepared in the lab in a matter of days. This technology gives the scientists the flexibility to substitute any atom in the protein sequence; hence synthesis is not constrained to the 20 canonical amino acids. In this Synpacts article we briefly highlight the recent studies on selenocysteine chemistry in the field of chemical protein synthesis.

1 Introduction

2 Selenocysteine in Nature and in Folding Studies

3 Selenocysteine in Protein Synthesis

4 Selenocysteine in Natural Selenoproteins

5 Outlook

 
  • References

  • 1 Kent SB. H. Chem. Soc. Rev. 2009; 38: 338
  • 2 Dawson PE. Kent SB. H. Ann. Rev. Biochem. 2000; 69: 923
  • 3 Bondalapati S. Jbara M. Brik A. Nat. Chem. 2016; 8: 407
  • 4 Merrifield RB. J. Am. Chem. Soc. 1963; 85: 2149
  • 5 Dawson PE. Muir TW. Clark-Lewis I. Kent SB. H. Science 1994; 266: 776
  • 6 Lutsky MY. Nepomniaschiy N. Brik A. Chem. Commun. 2008; 1229
  • 7 Offer J. Boddy CN. C. Dawson PE. J. Am. Chem. Soc. 2002; 124: 4642
  • 8 Low DW. Hill MG. Carrasco MR. Kent SB. H. Botti P. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 6554
  • 9 Marinzi C. Bark SJ. Offer J. Dawson PE. Bioorg. Med. Chem. 2001; 9: 2323
  • 10 Dawson PE. Isr. J. Chem. 2011; 51: 862
  • 11 Yan LZ. Dawson PE. J. Am. Chem. Soc. 2001; 123: 526
  • 12 Wan Q. Danishefsky SJ. Angew. Chem. Int. Ed. 2007; 46: 9248
  • 13 Thompson RE. Chan B. Radom L. Jolliffe KA. Payne RJ. Angew. Chem. Int. Ed. 2013; 52: 9723
  • 14 Malins LR. Cergol KM. Payne RJ. ChemBioChem 2013; 14: 559
  • 15 Pentelute BL. Kent SB. H. Org. Lett. 2007; 9: 687
  • 16 Townsend SD. Tan ZP. Dong SW. Shang SY. Brailsford JA. Danishefsky SJ. J. Am. Chem. Soc. 2012; 134: 3912
  • 17 Crich D. Banerjee A. J. Am. Chem. Soc. 2007; 129: 10064
  • 18 Haase C. Rohde H. Seitz O. J. Pep. Sci. 2008; 14: 69
  • 19 Harpaz Z. Siman P. Kumar KS. A. Brik A. ChemBioChem 2010; 11: 1232
  • 20 Chen J. Wan Q. Yuan Y. Zhu JL. Danishefsky SJ. Angew. Chem. Int. Ed. 2008; 47: 8521
  • 21 Kumar KS. A. Haj-Yahya M. Olschewski D. Lashuel HA. Brik A. Angew. Chem. Int. Ed. 2009; 48, 8090
  • 22 Stadtman TC. Ann. Rev. Biochem. 1996; 65: 83
  • 23 Cone JE. Martindelrio R. Davis JN. Stadtman TC. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 2659
  • 24 Lu J. Holmgren A. J. Biol. Chem. 2009; 284: 723
  • 25 Gromer S. Eubel JK. Lee BL. Jacob J. Cell. Mol. Life Sci. 2005; 62: 2414
  • 26 Metanis N. Hilvert D. Curr. Opin. Chem. Biol. 2014; 22: 27
  • 27 Steinmann D. Nauser T. Koppenol WH. J. Org. Chem. 2010; 75: 6696
  • 28 Pleasants JC. Guo W. Rabenstein DL. J. Am. Chem. Soc. 1989; 111: 6553
  • 29 Huber RE. Criddle RS. Arch. Biochem. Biophys. 1967; 122: 164
  • 30 Nauser T. Dockheer S. Kissner R. Koppenol WH. Biochemistry 2006; 45: 6038
  • 31 Fiori S. Pegoraro S. Rudolph-Bohner S. Cramer J. Moroder L. Biopolymers 2000; 53: 550
  • 32 Pegoraro S. Fiori S. Cramer J. Rudolph-Bohner S. Moroder L. Prot. Sci. 1999; 8: 1605
  • 33 Pegoraro S. Fiori S. Rudolph-Bohner S. Watanabe TX. Moroder L. J. Mol. Biol. 1998; 284: 779
  • 34 Metanis N. Hilvert D. Chem. Sci. 2015; 6: 322
  • 35 Metanis N. Hilvert D. Angew. Chem. Int. Ed. 2012; 51: 5585
  • 36 Quaderer R. Sewing A. Hilvert D. Helv. Chim. Acta 2001; 84: 1197
  • 37 Hondal RJ. Nilsson BL. Raines RT. J. Am. Chem. Soc. 2001; 123: 5140
  • 38 Gieselman MD. Xie LL. van der Donk WA. Org. Lett. 2001; 3: 1331
  • 39 Malins LR. Mitchell NJ. Payne RJ. J. Pept. Sci. 2014; 20: 64
  • 40 Eckenroth B. Harris K. Turanov AA. Gladyshev VN. Raines RT. Hondal RJ. Biochemistry 2006; 45: 5158
  • 41 During the review process of this paper, Rozovsky and co-workers presented the Sec-EPL approach, allowing access to many natural and unnatural selenoproteins: Liu J. Chen Q. Rozovsky S. J. Am. Chem. Soc. 2017; 139: 3430
  • 42 Mitchell NJ. Malins LR. Liu XY. Thompson RE. Chan B. Radom L. Payne RJ. J. Am. Chem. Soc. 2015; 137: 14011
  • 43 Metanis N. Keinan E. Dawson PE. Angew. Chem. Int. Ed. 2010; 49: 7049
  • 44 Dery S. Reddy PS. Dery L. Mousa R. Notis Dardashti R. Metanis N. Chem. Sci. 2015; 6: 6207
  • 45 Malins LR. Mitchell NJ. McGowan S. Payne RJ. Angew. Chem. Int. Ed. 2015; 54: 12716
  • 46 Mitchell NJ. Kulkarni SS. Malins LR. Wang S. Payne RJ. Chem. Eur. J. 2017; 23: 946
  • 47 Reddy PS. Dery S. Metanis N. Angew. Chem. Int. Ed. 2016; 55: 992
  • 48 Bang D. Kent SB. H. Angew. Chem. Int. Ed. 2004; 43: 2534
  • 49 Kryukov GV. Castellano S. Novoselov SV. Lobanov AV. Zehtab O. Guigo R. Gladyshev VN. Science 2003; 300: 1439
  • 50 Dery L. Reddy PS. Dery S. Mousa R. Ktorza O. Talhami A. Metanis N. Chem. Sci. 2017; 8: 1922
  • 51 Korotkov KV. Novoselov SV. Hatfield DL. Gladyshev VN. Mol. Cell Biol. 2002; 22: 1402
  • 52 Metanis N. Keinan E. Dawson PE. J. Am. Chem. Soc. 2006; 128: 16684