Synlett 2017; 28(06): 625-632
DOI: 10.1055/s-0036-1588688
synpacts
© Georg Thieme Verlag Stuttgart · New York

Rapid π-Extension of Aromatics via Alkyne Benzannulations

Wenlong Yang
University of Nevada, Reno, Department of Chemistry, 1664 N. Virginia St., Reno, NV 89557, USA   Email: wchalifoux@unr.edu
,
Wesley A. Chalifoux*
University of Nevada, Reno, Department of Chemistry, 1664 N. Virginia St., Reno, NV 89557, USA   Email: wchalifoux@unr.edu
› Author Affiliations
Further Information

Publication History

Received: 04 November 2016

Accepted after revision: 20 December 2016

Publication Date:
17 January 2017 (online)


Abstract

The rational synthesis of atomically precise polycyclic aromatic hydrocarbons (PAHs) and graphene nanoribbons (GNRs) has been achieved by using ‘bottom-up’ strategies. The creation of new methods to make functional PAHs and GNRs under mild conditions is of significant value. Recently, we have described the synthesis of pyrene, peropyrene, and teropyrene derivatives through the double or quadruple cyclization reaction of alkynes promoted by Brønsted acids. The successful synthesis of GNRs further exemplified the application of this method to the rapid construction of large PAHs.

 
  • References and Notes

  • 1 Wu J, Pisula W, Müllen K. Chem. Rev. 2007; 107: 718
  • 2 Sergeyev S, Pisula W, Geerts YH. Chem. Soc. Rev. 2007; 36: 1902
  • 3 Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M. Angew. Chem. Int. Ed. 2007; 46: 4832
  • 4 Pisula W, Feng X, Müllen K. Adv. Mater. 2010; 22: 3634
  • 5 Mei J, Diao Y, Appleton AL, Fang L, Bao Z. J. Am. Chem. Soc. 2013; 135: 6724
  • 6 Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S, Nuckolls C. Acc. Chem. Res. 2015; 48: 267
  • 7 Wöhrle T, Wurzbach I, Kirres J, Kostidou A, Kapernaum N, Litterscheidt J, Haenle JC, Staffeld P, Baro A, Giesselmann F, Laschat S. Chem. Rev. 2016; 116: 1139
  • 8 Markiewicz JT, Wudl F. ACS Appl. Mater. Interfaces 2015; 7: 28063
  • 9 Narita A, Wang X.-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
  • 10 Segawa Y, Ito H, Itami K. Nat. Rev. Mater. 2016; 1: 15002
  • 11 Herwig PT, Enkelmann V, Schmelz O, Müllen K. Chem. Eur. J. 2000; 6: 1834
  • 12 Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
  • 13 Sakamoto Y, Suzuki T. J. Am. Chem. Soc. 2013; 135: 14074
  • 14 McGlacken GP, Bateman LM. Chem. Soc. Rev. 2009; 38: 2447
  • 15 Seki M. Org. Process Res. Dev. 2016; 20: 867
  • 16 Daigle M, Picard-Lafond A, Soligo E, Morin J.-F. Angew. Chem. Int. Ed. 2016; 55: 2042
  • 17 Mohamed RK, Mondal S, Guerrera JV, Eaton TM, Albrecht-Schmitt TE, Shatruk M, Alabugin IV. Angew. Chem. Int. Ed. 2016; 55: 12054
  • 18 Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AH. R, Fytas G, Ivasenko O, Li B, Mali KS, Balandina T, Mahesh S, De Feyter S, Müllen K. Nat. Chem. 2014; 6: 126
  • 19 Vo TH, Shekhirev M, Kunkel DA, Morton MD, Berglund E, Kong L, Wilson PM, Dowben PA, Enders A, Sinitskii A. Nat. Commun. 2014; 5: 3189
  • 20 Vo TH, Shekhirev M, Lipatov A, Korlacki RA, Sinitskii A. Faraday Discuss. 2014; 173: 105
  • 21 Vo TH, Shekhirev M, Kunkel DA, Orange F, Guinel MJ. F, Enders A, Sinitskii A. Chem. Commun. 2014; 50: 4172
  • 22 Bennett PB, Pedramrazi Z, Madani A, Chen Y.-C, de Oteyza DG, Chen C, Fischer FR, Crommie MF, Bokor J. Appl. Phys. Lett. 2013; 103: 253114
  • 23 Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature 2010; 466: 470
  • 24 Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L. J. Am. Chem. Soc. 2015; 137: 4022
  • 25 Chen Y.-C, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF. ACS Nano 2013; 7: 6123
  • 26 Abdurakhmanova N, Amsharov N, Stepanow S, Jansen M, Kern K, Amsharov K. Carbon 2014; 77: 1187
  • 27 Liu J, Li B.-W, Tan Y.-Z, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X, Müllen K. J. Am. Chem. Soc. 2015; 137: 6097
  • 28 Han P, Akagi K, Federici Canova F, Mutoh H, Shiraki S, Iwaya K, Weiss PS, Asao N, Hitosugi T. ACS Nano 2014; 8: 9181
  • 29 Talirz L, Ruffieux P, Fasel R. Adv. Mater. 2016; 28: 6222
  • 30 Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R. Nature 2016; 531: 489
  • 31 Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
  • 32 King BT, Kroulík J, Robertson CR, Rempala P, Hilton CL, Korinek JD, Gortari LM. J. Org. Chem. 2007; 72: 2279
  • 33 Casas-Solvas JM, Howgego JD, Davis AP. Org. Biomol. Chem. 2014; 12: 212
  • 34 Figueira-Duarte TM, Müllen K. Chem. Rev. 2011; 111: 7260
  • 35 Venkataramana G, Sankararaman S. Eur. J. Org. Chem. 2005; 4162
  • 36 Hu JY, Ni XL, Feng X, Era M, Elsegood MR, Teat SJ, Yamato T. Org. Biomol. Chem. 2012; 10: 2255
  • 37 Coventry DN, Batsanov AS, Goeta AE, Howard JA. K, Marder TB, Perutz RN. Chem. Commun. 2005; 2172
  • 38 He YQ, Zhong YW. Chem. Commun. 2015; 51: 3411
  • 39 Crawford AG, Liu Z, Mkhalid IA. I, Thibault M.-H, Schwarz N, Alcaraz G, Steffen A, Collings JC, Batsanov AS, Howard JA. K, Marder TB. Chem. Eur. J. 2012; 18: 5022
  • 40 Uchida K, Ito S, Nakano M, Abe M, Kubo T. J. Am. Chem. Soc. 2016; 138: 2399
  • 41 Nichols VM, Rodriguez MT, Piland GB, Tham F, Nesterov VN, Youngblood WJ, Bardeen CJ. J. Phys. Chem. C 2013; 117: 16802
  • 42 Umemoto T, Kawashima T, Sakata Y, Misumi S. Tetrahedron Lett. 1975; 1005
  • 43 Merner BL, Dawe LN, Bodwell GJ. Angew. Chem. Int. Ed. 2009; 48: 5487
  • 44 Yang W, Monteiro JH. S. K, de Bettencourt-Dias A, Catalano VJ, Chalifoux WA. Angew. Chem. Int. Ed. 2016; 55: 10427
  • 45 Chalifoux WA, Tykwinski RR. Nat. Chem. 2010; 2: 967
  • 46 Chalifoux WA, Tykwinski RR. Chem. Rec. 2006; 6: 169
  • 47 Chernick ET, Tykwinski RR. J. Phys. Org. Chem. 2013; 26: 742
  • 48 Diederich F, Kivala M. Adv. Mater. 2010; 22: 803
  • 49 Diederich F, Rubin Y. Angew. Chem. Int. Ed. 1992; 31: 1101
  • 50 Alabugin IV, Gold B. J. Org. Chem. 2013; 78: 7777
  • 51 Asao N, Nogami T, Lee S, Yamamoto Y. J. Am. Chem. Soc. 2003; 125: 10921
  • 52 Fürstner A, Mamane V. J. Org. Chem. 2002; 67: 6264
  • 53 Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
  • 54 Chen TA, Lee TJ, Lin MY, Sohel SM, Diau EW, Lush SF, Liu RS. Chem. Eur. J. 2010; 16: 1826
  • 55 Fürstner A, Mamane V. Chem. Commun. 2003; 2112
  • 56 Stężycki R, Grzybowski M, Clermont G, Blanchard-Desce M, Gryko DT. Chem. Eur. J. 2016; 22: 5198
  • 57 Goldfinger MB, Swager TM. J. Am. Chem. Soc. 1994; 116: 7895
  • 58 Goldfinger MB, Crawford KB, Swager TM. J. Am. Chem. Soc. 1997; 119: 4578
  • 59 Yao T, Campo MA, Larock RC. J. Org. Chem. 2005; 70: 3511
  • 60 Walker DB, Howgego J, Davis AP. Synthesis 2010; 3686
  • 61 Matsuda T, Moriya T, Goya T, Murakami M. Chem. Lett. 2011; 40
  • 62 Pati K, Michas C, Allenger D, Piskun I, Coutros PS, dos Passos Gomes G, Alabugin IV. J. Org. Chem. 2015; 80: 11706
  • 63 Jin R, Chen J, Chen Y, Liu W, Xu D, Li Y, Ding A, Guo H. J. Org. Chem. 2016; 81: 12553
  • 64 Cinar ME, Ozturk T. Chem. Rev. 2015; 115: 3036
  • 65 Malytskyi V, Simon J.-J, Patrone L, Raimundo J.-M. RSC Adv. 2015; 5: 354
  • 66 Yang W, Monteiro JH. S. K, de Bettencourt-Dias A, Chalifoux WA. Can. J. Chem. 2017; in press; DOI: 10.1139/cjc-2016-0466.
  • 67 Yang W, Lucotti A, Tommasini M, Chalifoux WA. J. Am. Chem. Soc. 2016; 138: 9137