Synlett 2017; 28(04): 439-444
DOI: 10.1055/s-0036-1588640
letter
© Georg Thieme Verlag Stuttgart · New York

Lewis Acid Rather than Brønsted Acid Sites of Montmorillonite K10 Act as a Powerful and Reusable Green Heterogeneous Catalyst for Rapid Cyanosilylation of Ketones

Xiao Huang*
Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan Road, 610052, Chengdu, P. R. of China   Email: huangxiao@cdu.edu.cn   Email: wildwang_5@hotmail.com
,
Lin Chen
Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan Road, 610052, Chengdu, P. R. of China   Email: huangxiao@cdu.edu.cn   Email: wildwang_5@hotmail.com
,
Fengying Ren
Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan Road, 610052, Chengdu, P. R. of China   Email: huangxiao@cdu.edu.cn   Email: wildwang_5@hotmail.com
,
Chen Yang
Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan Road, 610052, Chengdu, P. R. of China   Email: huangxiao@cdu.edu.cn   Email: wildwang_5@hotmail.com
,
Jianghong Li
Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan Road, 610052, Chengdu, P. R. of China   Email: huangxiao@cdu.edu.cn   Email: wildwang_5@hotmail.com
,
Kejin Shi
Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan Road, 610052, Chengdu, P. R. of China   Email: huangxiao@cdu.edu.cn   Email: wildwang_5@hotmail.com
,
Xiaojun Gou
Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan Road, 610052, Chengdu, P. R. of China   Email: huangxiao@cdu.edu.cn   Email: wildwang_5@hotmail.com
,
Wei Wang*
Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, 168 Huaguan Road, 610052, Chengdu, P. R. of China   Email: huangxiao@cdu.edu.cn   Email: wildwang_5@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 30 July 2016

Accepted after revision: 10 October 2016

Publication Date:
11 November 2016 (online)


Abstract

A practical green protocol was developed for highly efficient cyanosilylation of various ketones catalyzed by commercial montmorillonite K10, with excellent isolated yields (91–99%). The catalyst can be used as received, and its catalytic strength can be easily restored without loss of activity. Investigations of catalyst recycling and of the active catalytic sites indicated that Lewis acid sites were mainly responsible for the cyanosilylation of ketones.

 
  • References and Notes

  • 1 Pinnavaia TJ. Science 1983; 220: 365
    • 15a Onaka M, Higuchi K, Sugita K, Izumi Y. Chem. Lett. 1989; 18: 1393
    • 15b Sn-MMT has been reported to be superior to any other ion-exchanged MMT (see ref. 14b), but we obtained a different result. This might be caused by different sources of unmodified MMT.
  • 16 To the best of our knowledge, there is only one report of an incomplete investigation of cyanosilylation of aldehydes by using MMT K10 as catalyst, see: Somanathan R, Rivero IA, Gama A, Ochoa A, Aguirre G. Synth. Commun. 1998; 28: 2043
  • 17 Catalyst Recycling and Restoration; General Procedure Catalyst Recycling: When the reaction was complete, the catalyst was collected by filtration with suction, washed thoroughly with PhMe, and then suction-dried uner air for reuse. Catalyst Reactivation: After being washed with PhMe, the spent catalyst was washed slowly with dilute HCl, prepared by adding 1 volume of concd HCl to 20 volumes of MeOH. The catalyst was then washed successively with anhydrous MeOH and PhMe. Finally, suction-drying under air fully restored the activity of the catalyst.
  • 20 Nagaraja P, Hemantha Kumar MS, Yathirajan HS, Prakash JS. Anal. Sci. 2002; 18: 1027
  • 21 Gallo JM. R, Teixeira S, Schuchardt U. Appl. Catal., A 2006; 311: 199
  • 22 2-Phenyl-2-(trimethylsiloxy)propanenitrile (2a); Typical Procedure A test tube was charged with PhCOMe (1a; 120 mg, 1.0 mmol), MMT K10 (20 mg), and PhMe (0.5 mL). TMSCN (190 μL, 1.5 mmol) was added dropwise with stirring at r.t. After 6 min, TLC indicated that the reaction was complete, and the mixture was filtered, washed with PhMe, and concentrated under reduced pressure to afford 2a as a colourless oil; yield: 218 mg (99%). 1H NMR (400 MHz, CDCl3, TMS): δ = 0.18 (s, 9 H), 1.87 (s, 3 H), 7.33–7.40 (m, 3 H), 7.53–7.57 (m, 2 H). 13C NMR (100 MHz, CDCl3, TMS): δ = 1.1, 33.6, 71.6, 121.6, 124.6, 128.5, 128.6, 141.6. 1,3,3-Trimethyl-2-(trimethylsiloxy)bicyclo[2.2.1]heptane-2-carbonitrile (2o) colorless oil; yield: 250 mg (99%). 1H NMR (300 MHz, CDCl3, TMS): δ = 0.26 (s, 9 H), 0.91 (s, 3 H), 0.99 (s, 3 H), 1.02 (s, 3 H), 1.12–1.25 (m, 1 H), 1.60–1.88 (m, 4 H), 2.06 (d, J = 14.1 Hz, 1 H), 2.23 (ddd, J = 14.1, 3.4, 3.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3, TMS): δ = 1.0, 10.5, 20.4, 21.1, 26.5, 31.7, 45.1, 47.8, 48.8, 54.1, 78.4, 121.8. 2,2-Diphenyl-2-(trimethylsiloxy)acetonitrile (2p) colourless oil; yield: 281 mg (99%). 1H NMR (300 MHz, CDCl3,TMS): δ = 0.12 (s, 9 H), 7.31–7.39 (m, 6 H), 7.47–7.51 (m, 4 H). 13C NMR (75 MHz, CDCl3 , TMS): δ = 1.0, 76.2, 120.5, 125.7, 128.3, 128.5, 141.7.
  • 23 Rapid Colorimetric Ninhydrin Detection of Cyanide (see also ref. 18) MMT K10 (100 mg) was treated with TMSCN (400 μL) for 6 h, collected by filtration, washed thoroughly with PhMe, and suction-dried under air for a few minutes. The filtrate was discarded. The resulting catalyst was washed slowly with anhyd MeOH (10 mL), while the filtrate was trapped simultaneously in 1 M aq NaOH (5 mL). Active charcoal (100 mg) was added to the resulting solution, and the mixture was agitated for 10 min then filtered. To the filtrate was added 1 wt% aq ninhydrin solution (1 mL) with stirring. The color of the solution gradually became blue within 2 min, indicating the presence of cyanide anion. The MeOH-washed catalyst was further rinsed thoroughly with an additional 20 mL of anhydrous MeOH to ensure a negative response to ninhydrin (the resulting catalyst was used in Table 2, entry 24, after washing with PhMe and suction-drying under air). The catalyst was washed again with 5 mL of dilute HCl solution, prepared by adding 1 volume of concd HCl to 20 volumes of MeOH, and the filtrate was trapped in 2 M aq NaOH (5 mL). Active charcoal (100 mg) was added to the resulting solution, and the mixture was agitated for 10 min then filtered. The final filtrate was subjected to colorimetric ninhydrin cyanide detection, as described above. The positive blue color obtained within 2 min proved that cyanide anion was present in this solution, showing that cyanide anions had been coordinated by Lewis sites and washed off with the dilute HCl.