Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(14): 1724-1728
DOI: 10.1055/s-0036-1588470
DOI: 10.1055/s-0036-1588470
cluster
Easy Access to Quinolin-2(1H)-ones via a One-Pot Tandem Oxa-Michael–Aldol Sequence
Further Information
Publication History
Received: 28 April 2017
Accepted after revision: 06 June 2017
Publication Date:
27 June 2017 (online)
Published as part of the ISHC Conference Special Section
Abstract
An efficient strategy for the synthesis of a variety of quinolin-2(1H)-one derivatives has been developed. The reaction proceeded from cinnamide derivatives via a tandem reaction in the presence of NaOH to afford the corresponding 2- quinolin-2(1H)-one derivatives in good to excellent yields.
Key words
quinolinone - tandem process - heterocycles - Michael addition - intramolecular aldol reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588470.
- Supporting Information
-
References and Notes
- 1a He J. Lion U. Sattler I. Gollmick F.-A. Grabley S. Cai J. Meiner M. Schaumann K. Dechert U. Krohn M. J. Nat. Prod. 2005; 68: 1397
- 1b Ito C. Itoigawa M. Furukawa A. Hirano T. Murata T. Kaneda N. Hisada Y. Okuda K. Furukawa H. J. Nat. Prod. 2004; 67: 1800
- 1c Chung H.-S. Woo W.-S. J. Nat. Prod. 2001; 64: 1579
- 1d Grabley S. Thiericke R. Drug Discovery from Nature . Springer; Berlin: 1999: 124
- 1e Michael JP. Nat. Prod. Rep. 1997; 14: 605
- 1f Balasubramanian M. Keay JG. Comprehensive Heterocyclic Chemistry II . Vol. 5. Katritzky AR. Rees CW. Scriven EF. V. Pergamon; Oxford: 1996: 245
- 1g Michael JP. Nat. Prod. Rep. 1995; 12: 465
- 1h Hanuman JB. Katz A. Nat. Prod. Lett. 1993; 3: 227
- 2a Tashima T. Bioorg. Med. Chem. Lett. 2015; 25: 3415
- 2b Poulie CB. M. Bunch L. ChemMedChem. 2013; 8: 5
- 2c Heeb S. Fletcher MP. Chhabra SR. Diggle SP. Williams P. Cámara M. FEMS Microbiol. Rev. 2011; 35: 247
- 3a Paramaguru G. Solomon RV. Jagadeeswari S. Venuvanalingam P. Renganathan R. Eur. J. Org. Chem. 2014; 753
- 3b Ganesan P. Chandiran A. Gao P. Rajalingam R. Grätzel M. Nazeeruddin MK. J. Phys. Chem. C 2014; 118: 16896
- 3c Micotto TL. Brown AS. Wilson JN. Chem. Commun. 2009; 7548
- 3d Badgujar NS. Pazicky M. Traar P. Terec A. Uray G. Stadlbauer W. Eur. J. Org. Chem. 2006; 2715
- 3e Goodell JR. Puig-Basagoiti F. Forshey BM. Shi P.-Y. Ferguson DM. J. Med. Chem. 2006; 49: 2127
- 4a Li H. Cheng P. Jiang L. Yang J.-L. Zu L. Angew. Chem. Int. Ed. 2017; 56: 2754
- 4b Vacala T. Bejcek LP. Williams CG. Williamson AC. Vadola PA. J. Org. Chem. 2017; 82: 2558
- 4c Zhang Z. Liao L. Yan S. Wang L. He Y. Ye J. Li J. Zhi Y. Yu D. Angew. Chem. Int. Ed. 2016; 55: 7068
- 4d Guan N. Pang Y. Zhang J. Zhao Y. Chem. Commun. 2016; 52: 7043
- 4e Huang B. Shen Y. Mao Z. Liu Y. Cui S. Org. Lett. 2016; 18: 4888
- 4f Luo L. Tao K. Peng X. Hu C. Lu Y. Wang Y. RSC Adv. 2016; 6: 104463
- 4g Li X. Li X. Jiao N. J. Am. Chem. Soc. 2015; 137: 9246
- 4h Yang X. Hu X. Loh T. Org. Lett. 2015; 17: 1481
- 4i Zhang J. Han X. Lu X. Synlett 2015; 26: 1744
- 4j Lu C.-Y. Chuang C.-P. Synthesis 2015; 47: 3687
- 4k Wu J. Xiang S. Zeng J. Leow M. Liu X. Org. Lett. 2015; 17: 222
- 4l Zeng R. Dong G. J. Am. Chem. Soc. 2015; 137: 1408
- 4m Dong Y. Liu B. Chen P. Liu Q. Wang M. Angew. Chem. Int. Ed. 2014; 53: 3442
- 4n Manikandan R. Jeganmohan M. Org. Lett. 2014; 16: 3568
- 4o Kim J. Moon Y. Lee S. Hong S. Chem. Commun. 2014; 50: 3227
- 4p Aksenov AV. Smirnov AN. Aksenov NH. Beller M. Wu X.-F. Chem. Eur. J. 2014; 20: 14189
- 5a Gelis C. Dumoulin A. Bekkaye M. Neuville L. Masson G. Org. Lett. 2017; 19: 278
- 5b Jarrige L. Levitre G. Masson G. J. Org. Chem. 2016; 7230
- 5c Dumoulin A. Masson G. J. Org. Chem. 2016; 81: 10154
- 5d Gelis C. Bekkaye M. Lebée C. Blanchard F. Masson G. Org. Lett. 2016; 18: 3422
- 5e Pous J. Courant T. Bernadat G. Iorga BI. Blanchard F. Masson G. J. Am. Chem. Soc. 2015; 137: 11950
- 5f He L. Laurent G. Retailleau P. Folléas B. Brayer J.-L. Masson G. Angew. Chem. Int. Ed. 2013; 52: 11088
- 5g Courant T. Kumarn S. He L. Masson G. Adv. Synth. Catal. 2013; 355: 836
- 5h Dagousset G. Zhu J. Masson G. J. Am. Chem. Soc. 2011; 133: 14804
- 6 The structure of 2h was unambiguously confirmed by X-ray crystallographic analyses. CCDC 1542892 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/getstructures (or from the Cambridge Crystallographic Center, 12 Union Road, CambridgeCB21EZ, UK; Fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk).
- 7a Nising CF. Brase S. Chem. Soc. Rev. 2008; 37: 1218
- 7b Molander GA. Wisniewski SR. Hosseini-Sarvaria M. Adv. Synth. Catal. 2013; 355: 3037
- 7c Jegham N. Kacem Y. BenHassine B. Heterocycles 2010; 81: 707
- 7d Weidner-Wells MA. Fraga-Spano SA. Turchi IJ. J. Org. Chem. 1998; 63: 6319
- 7e Kisanga PB. Verkade JG. J. Org. Chem. 2002; 67: 3555
- 7f Kisanga PB. Ilankumaran P. Fetterly BM. Verkade JG. J. Org. Chem. 2002; 67: 3555
- 7g Buchanan DJ. Dixon DJ. Hernandez-Juan FA. Org. Lett. 2004; 6: 1357
- 7h Wang L. Menche D. J. Org. Chem. 2012; 77: 10811
- 7i Fridén-Saxin M. Seifert T. Landergren MR. Suuronen T. Lahtela-Kakkonen M. Jarho EM. Luthman K. J. Med. Chem. 2012; 55: 7104
- 7j Guo S.-H. Xing S.-Z. Mao S. Gao Y.-R. Chen W.-L. Wang Y.-Q. Tetrahedron Lett. 2014; 55: 6718
- 7k Yoneda N. Hotta A. Asano K. Matsubara S. Org. Lett. 2014; 16: 6264
- 8a Domino Reactions: Concepts for Efficient Organic Synthesis. Tietze LF. Wiley-VCH; Weinheim: 2014
- 8b Behr A. Vorholt AJ. Ostrowski KA. Seidensticker T. Green Chem. 2014; 16: 982
- 8c Pellissier H. Chem. Rev. 2013; 113: 442
- 8d Pellìssier H. Tetrahedron 2013; 69: 7171
- 9a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. 2nd ed. Wiley; New York: 2013
- 9b Müller K. Faeh C. Diederich F. Science 2007; 317: 1881
- 9c Bioorganic and Medicinal Chemistry of Fluorine . Bégué J.-P. Bonnet-Delpon D. Wiley; Hoboken: 2008
- 9d Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 10a Nguyen TT. H. Nguyen TX. Cao TT. T. Dinh TH. Nguyen HH. Bui TT. T. Pham VP. Mac DH. Synlett 2017; 28: 429
- 10b Dodda R. Mandal T. Zhao C.-G. Tetrahedron Lett. 2008; 49: 1899
- 10c Zhao GL. Vesely J. Rios R. Ibrahem I. Sundén H. Córdova A. Adv. Synth. Catal. 2008; 350: 237
- 10d Zu L. Wang J. Li H. Xie H. Jiang W. Wang W. J. Am. Chem. Soc. 2007; 129: 1036
- 11 For a selected review, see: Parra A. Tortosa M. ChemCatChem 2015; 7: 1524
- 12 Representative Procedure for Tandem Reaction To a solution of substrate 1a (75.0 mg, 0.22 mmol, 1 equiv) in a mixture of EtOH and H2O (6 mL/3 mL, 2:1, 0.02 M) was added NaOH (35 mg, 0.87 mmol, 4 equiv) at r.t. The reaction mixture was stirred for 2 h at r.t. After completion, the reaction mixture was acidified with HCl (2 M) until pH = 7, and the solvent was remove under reduced pressure. The residue was then diluted in water, and the solution was extracted three times with EtOAc. The combined organic layers were washed with brine and dried with MgSO4. The organic layer was evaporated under reduced pressure, and the crude product was purified by flash chromatography on silica gel (n-heptane/EtOAc = 7:3) to afford the corresponding pure product 2b as a yellow solid (54 mg, isolated yield 75%); mp 236–240°C. 1H NMR (300 MHz, DMSO-d 6): δ = 11.87 (br s, 1 H), 9.33 (s, 1 H), 7.98 (s, 1 H), 7.91 (d, J = 2.6 Hz, 1 H), 7.49 (dd, J = 8.7, 2.4 Hz, 1 H), 7.28 (d, J = 8.7 Hz, 1 H), 7.16 (d, J = 8.7 Hz, 2 H), 6.68 (d, J = 8.6 Hz, 2 H), 5.42 (s, 1 H), 3.43 (qd, J = 7.0, 3.2 Hz, 2 H), 1.16 (t, J = 7.0 Hz, 3 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 160.4 (C), 157.8 (C), 136.5 (C), 135.8 (C), 132.8 (CH), 130.8 (C), 129.6 (CH), 128.6 (2 CH), 127.0 (CH), 125.6 (C), 120.3 (C), 116.6 (CH), 114.8 (2 CH), 76.4 (CH), 63.6 (CH2), 15.2 (CH3) ppm. IR (neat): ν = 3188, 3100, 2965, 2881, 2679, 1893, 1765, 1646, 1612, 1594, 1571, 1516, 1491, 1450, 1414, 1373, 1329, 1313, 1268, 1245, 1229, 1205, 1173, 1153, 1127, 1107, 1085, 1057, 1005 cm–1. ESI-HRMS (neg.): m/z [M – H]–calcd for C18H15ClNO3: 328.0740; found: 328.0750.
For some representative examples, see:
For recent reviews on biological studies of 2-quinolinones, see:
For selected examples, see:
For selected recent examples, see:
For recent reviews on oxa-Michael reaction, see:
Examples of oxy-Michael addition to cinnamides:
For selected examples, see:
For recent reviews on tandem reactions, see:
For recent examples of thio-Michael–aldol tandem reaction, see: