Synthesis 2017; 49(15): 3237-3246
DOI: 10.1055/s-0036-1588427
short review
© Georg Thieme Verlag Stuttgart · New York

Reactions of Allylmagnesium Halides with Carbonyl Compounds: Reactivity, Structure, and Mechanism

Nicole D. Bartolo
a   Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA   Email: kwoerpel@nyu.edu
,
Jacquelyne A. Read
a   Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA   Email: kwoerpel@nyu.edu
,
Elizabeth M. Valentín
a   Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA   Email: kwoerpel@nyu.edu
b   Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
,
a   Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA   Email: kwoerpel@nyu.edu
› Author Affiliations
Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund, for partial support of this research (57206-ND1). Additional support was provided by the National Institutes of Health, National Institute of General Medical Sciences (GM-61066). J.A.R. thanks the NYU Department of Chemistry for support in the form of a Margaret Strauss Kramer Fellowship.
Further Information

Publication History

Received: 25 April 2017

Accepted: 28 April 2017

Publication Date:
28 June 2017 (online)


We dedicate this paper to Professor Dr. Herbert Mayr on the occasion of his 70th birthday.

Abstract

The additions of allylmagnesium reagents to carbonyl compounds are important methods in synthetic organic chemistry, but the mechanisms of these reactions are likely to be distinct from mechanisms followed by other organomagnesium reagents. Additions to alkyl aldehydes and ketones are likely to be concerted, proceeding through six-membered-ring transition states. These highly reactive reagents appear to react at rates that approach the diffusion limit, so chemoselectivity is generally low. Furthermore, reactions of allylmagnesium halides with carbonyl compounds are unlikely to follow stereochemical models that require differentiation between competing transition states. This Short Review discusses the current state of understanding of these reactions, including the structure of the reagent and unique aspects of the reactivity of allylmagnesium reagents.

1 Introduction

2 Reactions with Carbonyl Compounds

2.1 Reactivity of Allylmagnesium Halides

2.2 Selectivity of Addition

3 Structure of Allylmagnesium Reagents

3.1 Schlenk Equilibrium and Aggregation

3.2 Spectroscopic Studies

3.3 X-ray Crystallographic Studies

3.4 Computational Studies of Structure

4 Reaction Mechanism

4.1 Substrate-Dependent Mechanisms

4.2 Concerted Mechanisms

4.3 Single-Electron Transfer Mechanisms

4.4 Open, SE2′-Like Transition State

4.5 Computational Studies of Mechanism

5 Conclusion

 
  • References

  • 1 Yus M. González-Gómez JC. Foubelo F. Chem. Rev. 2013; 113: 5595
  • 2 Borer BC. Deerenberg S. Bieräugel H. Pandit UK. Tetrahedron Lett. 1994; 35: 3191
  • 3 Sutherlin DP. Armstrong RW. J. Org. Chem. 1997; 62: 5267
  • 4 Nicolaou KC. McGarry DG. Somers PK. Kim BH. Ogilvie WW. Yiannikouros G. Prasad CV. C. Veale CA. Hark RR. J. Am. Chem. Soc. 1990; 112: 6263
  • 5 Moon NG. Harned AM. Org. Lett. 2015; 17: 2218
  • 6 Kita M. Oka H. Usui A. Ishitsuka T. Mogi Y. Watanabe H. Tsunoda M. Kigoshi H. Angew. Chem. Int. Ed. 2015; 54: 14174
  • 7 Reber KP. Xu J. Guerrero CA. J. Org. Chem. 2015; 80: 2397
  • 8 Plummer CW. Wei CS. Yozwiak CE. Soheili A. Smithback SO. Leighton JL. J. Am. Chem. Soc. 2014; 136: 9878
  • 9 Cardona F. D’Orazio G. Silva AM. S. Nicotra F. La Ferla B. Eur. J. Org. Chem. 2014; 2549
  • 10 Wang X. Yang T. Cheng X. Shen Q. Angew. Chem. Int. Ed. 2013; 52: 12860
  • 11 Moumé-Pymbock M. Furukawa T. Mondal S. Crich D. J. Am. Chem. Soc. 2013; 135: 14249
  • 12 Prasad KR. Gutala P. J. Org. Chem. 2013; 78: 3313
  • 13 Smaltz DJ. Švenda J. Myers AG. Org. Lett. 2012; 14: 1812
  • 14 Oguri H. Hiruma T. Yamagishi Y. Oikawa H. Ishiyama A. Otoguro K. Yamada H. Ōmura S. J. Am. Chem. Soc. 2011; 133: 7096
  • 15 Yamashita S. Ishihara Y. Morita H. Uchiyama J. Takeuchi K. Inoue M. Hirama M. J. Nat. Prod. 2011; 74: 357
  • 16 Taleb A. Lahrech M. Hacini S. Thibonnet J. Parrain J.-L. Synlett 2009; 1597
  • 17 Goodell JR. McMullen JP. Zaborenko N. Maloney JR. Ho C.-X. Jensen KF. Porco JA. Jr. Beeler AB. J. Org. Chem. 2009; 74: 6169
  • 18 Li F. Tartakoff SS. Castle SL. J. Am. Chem. Soc. 2009; 131: 6674
  • 19 Crimmins MT. Ellis JM. Emmitte KA. Haile PA. McDougall PJ. Parrish JD. Zuccarello JL. Chem. Eur. J. 2009; 15: 9223
  • 20 Maimone TJ. Voica A.-F. Baran PS. Angew. Chem. Int. Ed. 2008; 47: 3054
  • 21 Ley SV. Abad-Somovilla A. Anderson JC. Ayats C. Bänteli R. Beckmann E. Boyer A. Brasca MG. Brice A. Broughton HB. Burke BJ. Cleator E. Craig D. Denholm AA. Denton RM. Durand-Reville T. Gobbi LB. Göbel M. Gray BL. Grossmann RB. Gutteridge CE. Hahn N. Harding SL. Jennens DC. Jennens L. Lovell PJ. Lovell HJ. de la Puente ML. Kolb HC. Koot W.-J. Maslen SL. McCusker CF. Mattes A. Pape AR. Pinto A. Santafianos D. Scott JS. Smith SC. Somers AQ. Spilling CD. Stelzer F. Toogood PL. Turner RM. Veitch GE. Wood A. Zumbrunn C. Chem. Eur. J. 2008; 14: 10683
  • 22 Kartika R. Taylor RE. Angew. Chem. Int. Ed. 2007; 46: 6874
  • 23 Denmark SE. Yang S.-M. J. Am. Chem. Soc. 2004; 126: 12432
  • 24 Paquette LA. Seekamp CK. Kahane AL. Hilmey DG. Gallucci J. J. Org. Chem. 2004; 69: 7442
  • 25 Taylor RE. Jin M. Org. Lett. 2003; 5: 4959
  • 26 Bejjani J. Chemla F. Audouin M. J. Org. Chem. 2003; 68: 9747
  • 27 Liao X. Wu Y. De Brabander JK. Angew. Chem. Int. Ed. 2003; 42: 1648
  • 28 Smith CM. O’Doherty GA. Org. Lett. 2003; 5: 1959
  • 29 Holloway GA. Hügel HM. Rizzacasa MA. J. Org. Chem. 2003; 68: 2200
  • 30 Carda M. Castillo E. Rodríguez S. González F. Marco JA. Tetrahedron: Asymmetry 2001; 12: 1417
  • 31 Holt DJ. Barker WD. Jenkins PR. Panda J. Ghosh S. J. Org. Chem. 2000; 65: 482
  • 32 Liu H.-M. Chang C.-Y. Lai Y.-C. Yang M.-D. Chang C.-Y. Tetrahedron: Asymmetry 2014; 25: 187
  • 33 Seyferth D. Weiner MA. J. Org. Chem. 1959; 24: 1395
  • 34 Paquette LA. Lobben PC. J. Am. Chem. Soc. 1996; 118: 1917
  • 35 Adinolfi M. Barone G. Iadonisi A. Mangoni L. Manna R. Tetrahedron 1997; 53: 11767
  • 36 Qian X. Sujino K. Otter A. Palcic MM. Hindsgaul O. J. Am. Chem. Soc. 1999; 121: 12063
  • 37 Bartlett N. Gross L. Peron F. Asby DJ. Selby MD. Tavassoli A. Linclau B. Chem. Eur. J. 2014; 20: 3306
  • 38 Kocieński PJ. Yeates C. Street DA. Campbell SF. J. Chem. Soc., Perkin Trans. 1 1987; 2183
  • 39 Xuan J. Pan S. Zhang Y. Ye B. Ding H. Org. Biomol. Chem. 2015; 13: 1643
  • 40 Shi H. De S. Wang Q. Gao S. Wang X. Chen C. Tetrahedron Lett. 2015; 56: 3225
  • 41 Ding R. Fu J.-G. Xu G.-Q. Sun B.-F. Lin G.-Q. J. Org. Chem. 2014; 79: 240
  • 42 Mengel A. Reiser O. Chem. Rev. 1999; 99: 1191
  • 43 Carda M. González F. Rodríguez S. Marco JA. Tetrahedron: Asymmetry 1993; 4: 1799
  • 44 Holt DJ. Barker WD. Jenkins PR. Davies DL. Garratt S. Fawcett J. Russell DR. Ghosh S. Angew. Chem. Int. Ed. 1998; 37: 3298
  • 45 Paquette LA. Bolin DG. Stepanian M. Branan BM. Mallavadhani UV. Tae J. Eisenberg SW. E. Rogers RD. J. Am. Chem. Soc. 1998; 120: 11603
  • 46 Gajewski JJ. Bocian W. Brichford NL. Henderson JL. J. Org. Chem. 2002; 67: 4236
  • 47 Gajewski JJ. Bocian W. Harris NJ. Olson LP. Gajewski JP. J. Am. Chem. Soc. 1999; 121: 326
  • 48 Holm T. J. Org. Chem. 2000; 65: 1188
  • 49 Ashby EC. Acc. Chem. Res. 1988; 21: 414
  • 50 Otte DA. L. Woerpel KA. Org. Lett. 2015; 17: 3906
  • 51 Read JA. Woerpel KA. J. Org. Chem. 2017; 82: 2300
  • 52 Read, J. A.; Yang, Y.; Woerpel, K. A., Org. Lett. 2017, DOI: 10.1021/acs.orglett.7b01161.
  • 53 Benkeser RA. Synthesis 1971; 347
  • 54 Wang C. Wang Z. Xie X. Yao X. Li G. Zu L. Org. Lett. 2017; 19: 1828
  • 55 Ueda K. Umihara H. Yokoshima S. Fukuyama T. Org. Lett. 2015; 17: 3191
  • 56 Amoah E. Dieter RK. J. Org. Chem. 2017; 82: 2870
  • 57 Seiple IB. Zhang Z. Jakubec P. Langlois-Mercier A. Wright PM. Hog DT. Yabu K. Allu SR. Fukuzaki T. Carlsen PN. Kitamura Y. Zhou X. Condakes ML. Szczypinski FT. Green WD. Myers AG. Nature 2016; 533: 338
  • 58 Lee Y.-g. McGee KF. Chen J. Rucando D. Sieburth SMcN. J. Org. Chem. 2000; 65: 6676
  • 59 Chérest M. Felkin H. Tetrahedron Lett. 1968; 9: 2205
  • 60 Holm T. Acta. Chem. Scand. B 1983; 37: 567
  • 61 Clark TB. Woerpel KA. Org. Lett. 2006; 8: 4109
  • 62 Schmidt B. Wildemann H. J. Chem. Soc., Perkin Trans. 1 2002; 1050
  • 63 Esteve J. Jiménez C. Nebot J. Velasco J. Romea P. Urpí F. Tetrahedron 2011; 67: 6045
  • 64 Volonterio A. Bravo P. Corradi E. Fronza G. Meille SV. Vergani B. Zanda M. J. Fluorine Chem. 2001; 108: 245
  • 65 Volonterio A. Bravo P. Capelli S. Meille SV. Zanda M. Tetrahedron Lett. 1997; 38: 1847
  • 66 Osztrovszky G. Holm T. Madsen R. Org. Biomol. Chem. 2010; 8: 3402
  • 67 Knochel P. Singer RD. Chem. Rev. 1993; 93: 2117
  • 68 Manolikakes G. Schade MA. Hernandez CM. Mayr H. Knochel P. Org. Lett. 2008; 10: 2765
  • 69 Mayr H. Ofial AR. Angew. Chem. Int. Ed. 2006; 45: 1844
  • 70 Roth M. Mayr H. Angew. Chem., Int. Ed. Engl. 1995; 34: 2250
  • 71 Tishkov AA. Mayr H. Angew. Chem. Int. Ed. 2005; 44: 142
  • 72 Krumper JR. Salamant WA. Woerpel KA. J. Org. Chem. 2009; 74: 8039
  • 73 Beaver MG. Woerpel KA. J. Org. Chem. 2010; 75: 1107
  • 74 Mayr H. Breugst M. Ofial AR. Angew. Chem. Int. Ed. 2011; 50: 6470
  • 75 Roiban G.-D. Ilie A. Reetz MT. Chem. Lett. 2014; 43: 2
  • 76 Reetz MT. Acc. Chem. Res. 1993; 26: 462
  • 77 Chen X. Hortelano ER. Eliel EL. Frye SV. J. Am. Chem. Soc. 1992; 114: 1778
  • 78 Chen X. Hortelano ER. Eliel EL. Frye SV. J. Am. Chem. Soc. 1990; 112: 6130
  • 79 Frye SV. Eliel EL. Cloux R. J. Am. Chem. Soc. 1987; 109: 1862
  • 80 Schlenk W. Schlenk WJr. Ber. Dtsch. Chem. Ges. 1929; 62: 920
  • 81 Ashby EC. Laemmle J. Neumann HM. Acc. Chem. Res. 1974; 7: 272
  • 82 Smith MB. Becker WE. Tetrahedron 1966; 22: 3027
  • 83 Ashby EC. Parris GE. J. Am. Chem. Soc. 1971; 93: 1206
  • 84 Hutchinson DA. Beck KR. Benkeser RA. Grutzner JB. J. Am. Chem. Soc. 1973; 95: 7075
  • 85 Zieger HE. Roberts JD. J. Org. Chem. 1969; 34: 1976
  • 86 Walker FW. Ashby EC. J. Am. Chem. Soc. 1969; 91: 3845
  • 87 Hill EA. Boyd WA. Desai H. Darki A. Bivens L. J. Organomet. Chem. 1996; 514: 1
  • 88 Chmely SC. Carlson CN. Hanusa TP. Rheingold AL. J. Am. Chem. Soc. 2009; 131: 6344
  • 89 Cohen S. Yogev A. J. Am. Chem. Soc. 1976; 98: 2013
  • 90 Vestergren M. Eriksson J. Håkansson M. J. Organomet. Chem. 2003; 681: 215
  • 91 Yasuda H. Yamauchi M. Nakamura A. Sei T. Kai Y. Yasuoka N. Kasai N. Bull. Chem. Soc. Jpn. 1980; 53: 1089
  • 92 Sánchez-Barba LF. Garcés A. Fajardo M. Alonso-Moreno C. Fernández-Baeza J. Otero A. Antiñolo A. Tejeda J. Lara-Sánchez A. López-Solera MI. Organometallics 2007; 26: 6403
  • 93 Henriques AM. Monteiro JG. S. Barbosa AG. H. Theor. Chem. Acc. 2017; 136: 4
  • 94 Wiberg KB. Murcko MA. J. Am. Chem. Soc. 1988; 110: 8029
  • 95 Balabin RM. J. Phys. Chem. A 2009; 113: 1012
  • 96 Lichtenberg C. Spaniol TP. Peckermann I. Hanusa TP. Okuda J. J. Am. Chem. Soc. 2013; 135: 811
  • 97 Kano N. Yamamura M. Kawashima T. J. Am. Chem. Soc. 2004; 126: 6250
  • 98 Hassall K. Lobachevsky S. White JM. J. Org. Chem. 2005; 70: 1993
  • 99 Clark T. Rohde C. Schleyer P. vR. Organometallics 1983; 2: 1344
  • 100 Blicke FF. Powers LD. J. Am. Chem. Soc. 1929; 51: 3378
  • 101 Ashby EC. Lopp IG. Buhler JD. J. Am. Chem. Soc. 1975; 97: 1964
  • 102 Maruyama K. Katagiri T. J. Phys. Org. Chem. 1989; 2: 205
  • 103 Laemmle J. Ashby EC. Neumann HM. J. Am. Chem. Soc. 1971; 93: 5120
  • 104 Ashby EC. Duke RB. Neumann HM. J. Am. Chem. Soc. 1967; 89: 1964
  • 105 Evans DA. Science 1988; 240: 420
  • 106 Holm T. Crossland I. Acta Chem. Scand. 1971; 25: 59
  • 107 Hoffmann RW. Hölzer B. Chem. Commun. 2001; 491
  • 108 Hansch C. Leo A. Taft RW. Chem. Rev. 1991; 91: 165
  • 109 Kohler EP. Baltzly R. J. Am. Chem. Soc. 1932; 54: 4015
  • 110 Felix C. Laurent A. Mison P. J. Fluorine Chem. 1995; 70: 71
  • 111 Holm T. J. Am. Chem. Soc. 1993; 115: 916
  • 112 Yamataka H. Matsuyama T. Hanafusa T. J. Am. Chem. Soc. 1989; 111: 4912
  • 113 Yamataka H. Sasaki D. Kuwatani Y. Mishima M. Shimizu M. Tsuno Y. J. Org. Chem. 2001; 66: 2131
  • 114 Dam JH. Fristrup P. Madsen R. J. Org. Chem. 2008; 73: 3228
  • 115 Bachmann WE. J. Am. Chem. Soc. 1931; 53: 2758
  • 116 Felkin H. Frajerman C. Tetrahedron Lett. 1970; 1045
  • 117 Varea T. Alcalde A. Grancha A. Lloret J. Asensio G. Lledos A. J. Org. Chem. 2008; 73: 6521
  • 118 Mori T. Kato S. J. Phys. Chem. A 2009; 113: 6158
  • 119 Yamazaki S. Yamabe S. J. Org. Chem. 2002; 67: 9346
  • 120 Benhallam R. Zair T. Jarid A. Ibrahim-Ouali M. J. Mol. Struct. (Theochem) 2003; 626: 1
  • 121 Kennedy JW. J. Hall DG. Angew. Chem. Int. Ed. 2003; 42: 4732
  • 122 Zhang X. Houk KN. Leighton JL. Angew. Chem. Int. Ed. 2005; 44: 938