Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(19): 2699-2704
DOI: 10.1055/s-0036-1588298
DOI: 10.1055/s-0036-1588298
letter
One-Pot Synthesis of Sulfonamides from Sodium Sulfinates and Amines via Sulfonyl Bromides
Further Information
Publication History
Received: 25 June 2016
Accepted after revision: 31 July 2016
Publication Date:
22 August 2016 (online)
Abstract
a new and convenient procedure has been developed for the preparation of sulfonamides from sodium sulfinates and amines with (n-C4H9)4NBr as bromine source and m-chloroperbenzoic acid as oxidant. This S–N bond formation reaction proceeds efficiently via sulfonyl bromides under neutral conditions to afford the corresponding sulfonamides in good yields at room temperature.
-
References and Notes
- 1a Supuran CT, Casini A, Scozzafava A. Med. Res. Rev. 2003; 23: 535
- 1b Winum JY, Scozzafava A, Montero JL, Supuran CT. Med. Res. Rev. 2006; 26: 767
- 1c Kleemann A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substances, Synthesis Patents, Applications . Thieme; Stuttgart: 1999
- 1d Reddy NS, Mallireddigari MR, Cosenza KG, Bell SC, Reddy EP, Reddy MV. R. Bioorg. Med. Chem. Lett. 2004; 14: 4093
- 1e Stranix BR, Lavallee JF, Sevigny G, Yelle J, Perron V, Leberre N, Herbart D, Wu JJ. Bioorg. Med. Chem. Lett. 2006; 16: 3459
- 1f Basanagouda M, Shivashankar K, Kulkarni MV, Rasal VP, Patel H, Mutha SS, Mohite AA. Eur. J. Med. Chem. 2010; 45: 1151
- 1g Chohan ZH, Youssoufi MH, Jarrahpour A, Hadda TB. Eur. J. Med. Chem. 2010; 45: 1189
- 2a Green TW, Wuts PG. M. Protecting Groups in Organic Synthesis . Wiley-Interscience; New York: 1999
- 2b Chandrasekhar S, Mohapatra S. Tetrahedron Lett. 1998; 39: 695
- 3a Andersen K In Comprehensive Organic Chemistry . Pergamon Press; Oxford: 1979. Vol. 3
- 3b Sridhar R, Srinivas B, Kumar VP, Narender M, Rao KR. Adv. Synth. Catal. 2007; 349: 1873
- 3c Harmata M, Zheng P, Huang C, Gomes MG, Ying W, Ranyanil K.-O, Balan G, Calkins NL. J. Org. Chem. 2007; 72: 683
- 4a Yin J, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 6043
- 4b Burton G, Cao P, Li G, Rivero R. Org. Lett. 2003; 5: 4373
- 4c Rosen BR, Ruble JC, Beauchamp TJ, Navarro A. Org. Lett. 2011; 13: 2564
- 4d Baffoe J, Hoe MY, Touré BB. Org. Lett. 2010; 12: 1532
- 4e Lam PY. S, Vincent G, Clark CG, Deudon S, Jadhav PK. Tetrahedron Lett. 2001; 42: 3415
- 4f Rao SK, Wu T.-S. Tetrahedron 2012; 68: 7735
- 4g Zhu M, Fujita K, Yamaguchi R. Org. Lett. 2010; 12: 1336
- 4h Watson AJ. A, Maxwell AC, Williams JM. J. J. Org. Chem. 2011; 76: 2328
- 4i Kalita B, Lamar AA, Nicholas KM. Chem. Commun. 2008; 4291
- 4j Xiao B, Gong TJ, Xu J, Liu ZJ, Liu L. J. Am. Chem. Soc. 2011; 133: 1466
- 5a Tang X, Huang L, Qi C, Wu X, Wu W, Jiang H. Chem. Commun. 2013; 49: 6102
- 5b Moon S.-Y, Nam J, Rathwell K, Kim W.-S. Org. Lett. 2014; 16: 338
- 5c Huang X, Wang J, Ni Z, Wang S, Pan Y. Chem. Commun. 2014; 4582
- 6 Finkbeiner P, Nachtsheim BJ. Synthesis 2013; 45: 979
- 7a Zhao J, Li P, Xia C, Li F. Chem. Commun. 2014; 50: 4751
- 7b Guo S, Yu J.-T, Dai Q, Yang H, Cheng J. Chem. Commun. 2014; 50: 6240
- 7c Wu X.-F, Gong J.-L, Qi X. Org. Biomol. Chem. 2014; 12: 5807
- 7d Jia Z, Nagano T, Li X, Chan AS. C. Eur. J. Org. Chem. 2013; 858
- 7e Zeng LY, Yi WB, Cai C. Eur. J. Org. Chem. 2012; 559
- 7f Froehr T, Sindlinger CP, Kloeckner U, Finkbeiner P, Nachtsheim BJ. Org. Lett. 2011; 13: 3754
- 7g Lamani M, Prabhu KR. J. Org. Chem. 2011; 76: 7938
- 7h Yuan Y, Ji X, Zhao D. Eur. J. Org. Chem. 2010; 5274
- 7i Reddy KR, Maheswari CU, Venkateshwar M, Kantam ML. Eur. J. Org. Chem. 2008; 3619
- 7j Liotta D. Acc. Chem. Res. 1984; 17: 28
-
8a Lin Y.-M, Lu G.-P, Cai C, Yi W.-B. Org. Lett. 2015; 17: 3310
- 8b Kariya A, Yamaguchi T, Nobuta T, Tada N, Miura T, Itoh A. RSC Adv. 2014; 4: 13191
- 8c Katrun P, Hongthong S, Hlekhlai S, Pohmakotr M, Reutrakul V, Soorukram D, Jaipetch T, Kuhakarn C. RSC Adv. 2014; 4: 18933
- 8d Gao W.-C, Zhao J.-J, Hu F, Chang H.-H, Li X, Wei W.-L. RSC Adv. 2015; 5: 25222
- 8e Katrun P, Mueangkaew C, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. J. Org. Chem. 2014; 79: 1778
- 8f Xiao F.-H, Chen H, Xie H, Chen S.-Q, Yang L, Deng G.-J. Org. Lett. 2014; 16: 50
- 8g Xiao F.-H, Xie H, Liu S.-W, Deng G.-J. Adv. Synth. Catal. 2014; 356: 364
- 9a Yang K, Ke M, Lin Y.-G, Song Q.-L. Green Chem. 2015; 17: 1395
- 9b Pan X.-J, Gao J, Liu J, Lai J.-Y, Jiang H.-F, Yuan G.-Q. Green Chem. 2015; 17: 1400
- 9c Wei W, Liu C.-L, Yang D.-S, Wen J.-W, You J.-M, Wang H. Adv. Synth. Catal. 2015; 357: 987
- 9d Chonchanok B, Danupat B, Sirilata Y. Eur. J. Org. Chem. 2015; 1575
- 9e Zhao J.-W, Xu J.-X, Chen J.-X, Wang X.-Q, He M.-H. RSC Adv. 2014; 4: 64698
- 10 A Typical Procedure for the Preparation of Sulfonamides In mixed solvent THF–MeOH (30:1, 2.0 mL), sodium sulfinates 1 (0.45 mmol), amines 2 (0.30 mmol), (n-Bu)4NBr (0.36 mmol), and m-CPBA (0.3 mmol) were added successively. The suspension mixture was vigorously stirred at r.t. for 12 h. Upon completion, the reaction was quenched by addition of sat. aq Na2S2O3 (2 mL), sat. aq Na2CO3 (8 mL), and H2O (5 mL), respectively. The mixture was extracted with CH2Cl2 (3 × 5 mL) and the combined organic phase was dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was then purified on a silica gel plate (PE–EtOAc = 3:1) to furnish products 3. N-Benzylbenzenesulfonamide (3a) White solid; mp 82–83 °C (lit.12 85–87 °C). IR (KBr): 3329, 1326, 1162, 1093, 1061, 750, 687 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.86 (d, J = 7.2 Hz, 2 H), 7.59–7.54 (m, 1 H), 7.50–7.45 (m, J = 7.7 Hz, 2 H), 7.27–7.21 (m, 3 H), 7.20–7.16 (m, 2 H), 5.43 (t, J = 6.1 Hz, 1 H), 4.12 (d, J = 6.3 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 139.8, 136.2, 132.5, 129.0, 128.5, 127.7, 127.6, 126.9, 47.0. ESI-MS: m/z (%) = 265 (100) [M + NH4]+. N-(4-Methoxybenzyl)benzenesulfonamide (3b) White solid; mp 71–72 °C (lit.13 72–75°C). IR (KBr): 3281, 1513, 1321, 1254, 1158, 1091, 1031, 858, 730, 685, 590 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.85–7.81 (m, 2 H), 7.57–7.52 (m, 1 H), 7.47 (t, J = 7.7 Hz, 2 H), 7.08 (d, J = 8.6 Hz, 2 H), 6.75 (d, J = 8.7 Hz, 2 H), 5.38 (t, J = 6.1 Hz, 1 H), 4.04 (d, J = 6.1 Hz, 2 H), 3.73 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 159.0, 139.8, 132.4, 129.1, 128.9, 128.2, 126.9, 113.8, 55.1, 46.5. ESI-MS: m/z (%) = 295 (100) [M + NH4]+. 4-(Phenylsulfonyl)morpholine (3f) White solid; mp 107–108 °C (lit.14 117–119 °C). IR (KBr): 2979, 2862, 1450, 1347, 1261, 1168, 1109, 943, 746, 693, 579, 532 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.78–7.73 (m, 2 H), 7.66–7.60 (m, 1 H), 7.58–7.53 (m, 2 H), 3.73 (t, J = 4.8 Hz, 4 H), 3.00 (t, J = 4.7 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 135.1, 133.0, 129.1, 127.8, 66.0, 45.9. ESI-MS: m/z (%) = 228 (100) [M + H]+. N-(4-Chlorobenzyl)-4-methylbenzenesulfonamide (3k) White solid; mp 92–93 °C (lit.15 88 °C). IR (KBr): 3234, 1641, 1492, 1319, 1157, 1091, 816, 549 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.71 (d, J = 8.3 Hz, 2 H), 7.28 (d, J = 8.0 Hz, 3 H), 7.21 (d, J = 8.5 Hz, 2 H), 7.12 (d, J = 8.5 Hz, 2 H), 5.27 (t, J = 6.3 Hz, 1 H), 4.07 (d, J = 6.4 Hz, 2 H), 2.44 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 143.6, 136.8, 135.0, 133.6, 129.8, 129.2, 128.7, 127.1, 46.5, 21.5. ESI-MS: m/z (%) = 313 (73) [M + NH4]+.
- 12 Cano R, Ramón DJ, Yus M. J. Org. Chem. 2011; 76: 5547
- 13 Molander GA, Fleury-Brégeot N, Hiebel M.-A. Org. Lett. 2011; 13: 1694
- 14 Modarresi-Alam AR, Amirazizi HA, Bagheri H, Bijanzadeh H.-R, Kleinpeter E. J. Org. Chem. 2009; 74: 4740
- 15 Cui X, Shi F, Tse MK, Gördes D, Thurow K, Beller M, Deng Y. Adv. Synth. Catal. 2009; 351: 2949