Semin Reprod Med 2015; 33(06): 396-400
DOI: 10.1055/s-0035-1567822
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Metabolic Determinants of Mitochondrial Function in Oocytes

Emily A. Seidler
1   Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
,
Kelle H. Moley
1   Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
› Author Affiliations
Further Information

Publication History

Publication Date:
12 November 2015 (online)

Abstract

Mitochondrial production of cellular energy is essential to oocyte function, zygote development and successful continuation of pregnancy. This review focuses on several key functions of healthy oocyte mitochondria and the effect of pathologic states such as aging, oxidative stress and apoptosis on these functions. The effect of these abnormal conditions is presented in terms of clinical presentations, specifically maternal obesity, diminished ovarian reserve and assisted reproductive technologies.

 
  • References

  • 1 Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod 1995; 10 (2) 415-424
  • 2 Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 2007; 77: 21-49
  • 3 Schon EA, Kim SH, Ferreira JC , et al. Chromosomal non-disjunction in human oocytes: is there a mitochondrial connection?. Hum Reprod 2000; 15 (Suppl. 02) 160-172
  • 4 Reynier P, May-Panloup P, Chrétien MF , et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod 2001; 7 (5) 425-429
  • 5 Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 2004; 128 (3) 269-280
  • 6 Van Blerkom J, Davis P, Alexander S. Occurrence of maternal and paternal spindles in unfertilized human oocytes: possible relationship to nucleation defects after silent fertilization. Reprod Biomed Online 2004; 8 (4) 454-459
  • 7 Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 2009; 15 (5) 553-572
  • 8 Wakai T, Zhang N, Vangheluwe P, Fissore RA. Regulation of endoplasmic reticulum Ca(2+) oscillations in mammalian eggs. J Cell Sci 2013; 126 (Pt 24): 5714-5724
  • 9 Dumollard R, Marangos P, Fitzharris G, Swann K, Duchen M, Carroll J. Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 2004; 131 (13) 3057-3067
  • 10 Simsek-Duran F, Li F, Ford W, Swanson RJ, Jones Jr HW, Castora FJ. Age-associated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes. PLoS ONE 2013; 8 (5) e64955
  • 11 Sato M, Sato K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim Biophys Acta 2013; 1833 (8) 1979-1984
  • 12 Al Rawi S, Louvet-Vallée S, Djeddi A , et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 2011; 334 (6059) 1144-1147
  • 13 Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2013; 20 (1) 31-42
  • 14 Yu J, Nagasu H, Murakami T , et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A 2014; 111 (43) 15514-15519
  • 15 Gaziev AI, Abdullaev S, Podlutsky A. Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology 2014; 15 (5) 417-438
  • 16 Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002; 2 (4) 277-288
  • 17 Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35 (4) 495-516
  • 18 Jurisicova A, Varmuza S, Casper RF. Programmed cell death and human embryo fragmentation. Mol Hum Reprod 1996; 2 (2) 93-98
  • 19 Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 1998; 13 (4) 998-1002
  • 20 Harman D. Role of free radicals in aging and disease. Ann N Y Acad Sci 1992; 673: 126-141
  • 21 Grindler NM, Moley KH. Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol Hum Reprod 2013; 19 (8) 486-494
  • 22 Omari S, Waters M, Naranian T , et al. Mcl-1 is a key regulator of the ovarian reserve. Cell Death Dis 2015; 6: e1755
  • 23 Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 2011; 11 (5) 797-813
  • 24 Thouas GA, Trounson AO, Wolvetang EJ, Jones GM. Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol Reprod 2004; 71 (6) 1936-1942
  • 25 Wakefield SL, Lane M, Mitchell M. Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol Reprod 2011; 84 (3) 572-580
  • 26 Thouas GA, Trounson AO, Jones GM. Developmental effects of sublethal mitochondrial injury in mouse oocytes. Biol Reprod 2006; 74 (5) 969-977
  • 27 Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE, Moley KH. Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 2010; 151 (8) 4039-4046
  • 28 Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 2015; 72 (2) 251-271
  • 29 Wu LL, Russell DL, Wong SL , et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 2015; 142 (4) 681-691
  • 30 Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 2008; 14 (2) 159-177
  • 31 Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001; 122 (6) 829-838
  • 32 Boucret L, Chao de la Barca JM, Morinière C , et al. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod 2015; 30 (7) 1653-1664
  • 33 Babayev E, Seli E. Oocyte mitochondrial function and reproduction. Curr Opin Obstet Gynecol 2015; 27 (3) 175-181
  • 34 Ben-Meir A, Burstein E, Borrego-Alvarez A , et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 2015; 14 (5) 887-895
  • 35 Bentov Y, Hannam T, Jurisicova A, Esfandiari N, Casper RF. Coenzyme Q10 supplementation and oocyte aneuploidy in women undergoing IVF-ICSI treatment. Clin Med Insights Reprod Health 2014; 8: 31-36
  • 36 Bentov Y, Casper RF. The aging oocyte—can mitochondrial function be improved?. Fertil Steril 2013; 99 (1) 18-22
  • 37 Lee HS, Ma H, Juanes RC , et al. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Reports 2012; 1 (5) 506-515
  • 38 St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 2010; 16 (5) 488-509
  • 39 Thouas GA, Trounson AO, Jones GM. Effect of female age on mouse oocyte developmental competence following mitochondrial injury. Biol Reprod 2005; 73 (2) 366-373
  • 40 Houghton FD. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 2006; 74 (1) 11-18
  • 41 Liu L, Trimarchi JR, Keefe DL. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod 2000; 62 (6) 1745-1753
  • 42 Chiaratti MR, Ferreira CR, Perecin F , et al. Ooplast-mediated developmental rescue of bovine oocytes exposed to ethidium bromide. Reprod Biomed Online 2011; 22 (2) 172-183
  • 43 Spikings EC, Alderson J, St John JC. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod 2007; 76 (2) 327-335
  • 44 Takeuchi T, Neri QV, Katagiri Y, Rosenwaks Z, Palermo GD. Effect of treating induced mitochondrial damage on embryonic development and epigenesis. Biol Reprod 2005; 72 (3) 584-592
  • 45 Müller-Höcker J, Schäfer S, Weis S, Münscher C, Strowitzki T. Morphological-cytochemical and molecular genetic analyses of mitochondria in isolated human oocytes in the reproductive age. Mol Hum Reprod 1996; 2 (12) 951-958
  • 46 Amato P, Tachibana M, Sparman M, Mitalipov S. Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases. Fertil Steril 2014; 101 (1) 31-35
  • 47 Woods DC, Tilly JL. The next (re)generation of ovarian biology and fertility in women: is current science tomorrow's practice?. Fertil Steril 2012; 98 (1) 3-10
  • 48 Wolf DP, Mitalipov N, Mitalipov S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med 2015; 21 (2) 68-76