J Pediatr Genet 2015; 04(03): 128-135
DOI: 10.1055/s-0035-1564439
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Next-Generation Sequencing in Intellectual Disability

Gemma L. Carvill
1   Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States
,
Heather C. Mefford
1   Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States
› Author Affiliations
Further Information

Publication History

02 June 2015

03 June 2015

Publication Date:
12 October 2015 (online)

Abstract

Next-generation sequencing technologies have revolutionized gene discovery in patients with intellectual disability (ID) and led to an unprecedented expansion in the number of genes implicated in this disorder. We discuss the strategies that have been used to identify these novel genes for both syndromic and nonsyndromic ID and highlight the phenotypic and genetic heterogeneity that underpin this condition. Finally, we discuss the future of defining the genetic etiology of ID, including the role of whole-genome sequencing, mosaicism, and the importance of diagnostic testing in ID.

 
  • References

  • 1 American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV. Vol. 4th. Washington, DC: American Psychiatric Association; 1994: 886
  • 2 Leonard H, Wen X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev 2002; 8 (3) 117-134
  • 3 Stankiewicz P, Beaudet AL. Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 2007; 17 (3) 182-192
  • 4 Cooper GM, Coe BP, Girirajan S , et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011; 43 (9) 838-846
  • 5 de Brouwer AP, Yntema HG, Kleefstra T , et al. Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium. Hum Mutat 2007; 28 (2) 207-208
  • 6 Musante L, Ropers HH. Genetics of recessive cognitive disorders. Trends Genet 2014; 30 (1) 32-39
  • 7 Ng SB, Bigham AW, Buckingham KJ , et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010; 43 (9) 790-793
  • 8 Schuurs-Hoeijmakers JH, Oh EC, Vissers LE , et al. Recurrent de novo mutations in PACS1 cause defective cranial-neural-crest migration and define a recognizable intellectual-disability syndrome. Am J Hum Genet 2012; 91 (6) 1122-1127
  • 9 Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 2015; 519 (7542) 223-228
  • 10 Basel-Vanagaite L, Dallapiccola B, Ramirez-Solis R , et al. Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome. Am J Hum Genet 2012; 91 (6) 998-1010
  • 11 Murdock DR, Clark GD, Bainbridge MN , et al. Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria. Am J Med Genet A 2011; 155A (9) 2071-2077
  • 12 Bilguvar K, Oztürk AK, Louvi A , et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 2010; 467 (7312) 207-210
  • 13 Krawitz PM, Schweiger MR, Rödelsperger C , et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 2010; 42 (10) 827-829
  • 14 Krawitz PM, Murakami Y, Hecht J , et al. Mutations in PIGO, a member of the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am J Hum Genet 2012; 91 (1) 146-151
  • 15 Najmabadi H, Hu H, Garshasbi M , et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011; 478 (7367) 57-63
  • 16 Vissers LE, de Ligt J, Gilissen C , et al. A de novo paradigm for mental retardation. Nat Genet 2010; 42 (12) 1109-1112
  • 17 Hamdan FF, Srour M, Capo-Chichi JM , et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet 2014; 10 (10) e1004772
  • 18 de Ligt J, Willemsen MH, van Bon BW , et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 2012; 367 (20) 1921-1929
  • 19 Rauch A, Wieczorek D, Graf E , et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012; 380 (9854) 1674-1682
  • 20 Vulto-van Silfhout AT, Rajamanickam S, Jensik PJ , et al. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems. Am J Hum Genet 2014; 94 (5) 649-661
  • 21 Tham E, Lindstrand A, Santani A , et al. Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am J Hum Genet 2015; 96 (3) 507-513
  • 22 Heron SE, Crossland KM, Andermann E , et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 2002; 360 (9336) 851-852
  • 23 Kamiya K, Kaneda M, Sugawara T , et al. A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. J Neurosci 2004; 24 (11) 2690-2698
  • 24 Ogiwara I, Ito K, Sawaishi Y , et al. De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology 2009; 73 (13) 1046-1053
  • 25 Iossifov I, O'Roak BJ, Sanders SJ , et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014; 515 (7526) 216-221
  • 26 Carvill GL, Heavin SB, Yendle SC , et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013; 45 (7) 825-830
  • 27 Lemke JR, Hendrickx R, Geider K , et al. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 2014; 75 (1) 147-154
  • 28 Kuechler A, Zink AM, Wieland T , et al. Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome. Eur J Hum Genet 2015; 23 (6) 753-760
  • 29 O'Roak BJ, Stessman HA, Boyle EA , et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun 2014; 5: 5595
  • 30 Zweier M, Gregor A, Zweier C , et al; Cornelia Kraus. Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression. Hum Mutat 2010; 31 (6) 722-733
  • 31 Kleefstra T, Smidt M, Banning MJ , et al. Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet 2005; 42 (4) 299-306
  • 32 Talkowski ME, Mullegama SV, Rosenfeld JA , et al. Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet 2011; 89 (4) 551-563
  • 33 Coe BP, Witherspoon K, Rosenfeld JA , et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 2014; 46 (10) 1063-1071
  • 34 Hoischen A, van Bon BW, Gilissen C , et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nature genetics 2010; 42 (6) 483-485
  • 35 Schuurs-Hoeijmakers JH, Vulto-van Silfhout AT, Vissers LE , et al. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing. J Med Genet 2013; 50 (12) 802-811
  • 36 Gilissen C, Hehir-Kwa JY, Thung DT , et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014; 511 (7509) 344-347
  • 37 Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet 2014; 46 (8) 818-825
  • 38 Yuen RK, Thiruvahindrapuram B, Merico D , et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med 2015; 21 (2) 185-191
  • 39 Jiang YH, Yuen RK, Jin X , et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet 2013; 93 (2) 249-263
  • 40 Chadwick LH. The NIH Roadmap Epigenomics Program data resource. Epigenomics 2012; 4 (3) 317-324
  • 41 Consortium EP ; ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004; 306 (5696) 636-640
  • 42 Bamford S, Dawson E, Forbes S , et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 2004; 91 (2) 355-358
  • 43 Lindhurst MJ, Sapp JC, Teer JK , et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 2011; 365 (7) 611-619
  • 44 Kurek KC, Luks VL, Ayturk UM , et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 2012; 90 (6) 1108-1115
  • 45 Rivière JB, Mirzaa GM, O'Roak BJ , et al; Finding of Rare Disease Genes (FORGE) Canada Consortium. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012; 44 (8) 934-940
  • 46 Poduri A, Evrony GD, Cai X , et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 2012; 74 (1) 41-48
  • 47 Gleeson JG, Minnerath S, Kuzniecky RI , et al. Somatic and germline mosaic mutations in the doublecortin gene are associated with variable phenotypes. Am J Hum Genet 2000; 67 (3) 574-581
  • 48 Huisman SA, Redeker EJ, Maas SM, Mannens MM, Hennekam RC. High rate of mosaicism in individuals with Cornelia de Lange syndrome. J Med Genet 2013; 50 (5) 339-344
  • 49 Simons C, Rash LD, Crawford J , et al. Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nat Genet 2015; 47 (1) 73-77
  • 50 Soden SE, Saunders CJ, Willig LK , et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med 2014; 6 (265) 265ra168
  • 51 Hiatt JB, Pritchard CC, Salipante SJ, O'Roak BJ, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res 2013; 23 (5) 843-854
  • 52 Poirier K, Lebrun N, Broix L , et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 2013; 45 (6) 639-647
  • 53 Willemsen MH, Nijhof B, Fenckova M , et al. GATAD2B loss-of-function mutations cause a recognisable syndrome with intellectual disability and are associated with learning deficits and synaptic undergrowth in Drosophila. J Med Genet 2013; 50 (8) 507-514
  • 54 Allen AS, Berkovic SF, Cossette P , et al; Epi4K Consortium; Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 2013; 501 (7466) 217-221