Synthesis 2016; 48(23): 4167-4174
DOI: 10.1055/s-0035-1562787
paper
© Georg Thieme Verlag Stuttgart · New York

An Asymmetric Synthesis of Rosuvastatin Calcium

Naresh Vempala
a   Primodia Chemicals and Pharmaceuticals Pvt. Ltd., R & D Centre, 4th Floor, S-9, T.I.E, Phase-II, Gate-1, Balanagar, Hyderabad, 500 037, India   Email: brajasundar@yahoo.com
b   Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500 085, India
,
Settipalli Venkateswara Rao
a   Primodia Chemicals and Pharmaceuticals Pvt. Ltd., R & D Centre, 4th Floor, S-9, T.I.E, Phase-II, Gate-1, Balanagar, Hyderabad, 500 037, India   Email: brajasundar@yahoo.com
,
Anireddy Jaya Shree
b   Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500 085, India
,
Braja S. Pradhan*
a   Primodia Chemicals and Pharmaceuticals Pvt. Ltd., R & D Centre, 4th Floor, S-9, T.I.E, Phase-II, Gate-1, Balanagar, Hyderabad, 500 037, India   Email: brajasundar@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 15 April 2016

Accepted after revision: 20 June 2016

Publication Date:
16 August 2016 (online)


Abstract

A novel asymmetric synthesis of a (3R,5S)-dihydroxyhexanoic ester is described. The ester, which serves as the precursor for generating the side chain of rosuvastatin, is synthesized from d-glucose and subsequently coupled, under Wittig olefination conditions, with a phosphonium ylide derived from an appropriately substituted pyrimidine moiety. The coupling results in the formation of a precursor containing all the structural features of rosuvastatin. This precursor is converted into rosuvastatin calcium following a well-established procedure.

Supporting Information

 
  • References

  • 1 Pfefferkorn JA In The Art of Drug Synthesis . Johnson DS, Li J. John Wiley & Sons; Hoboken: 2007: 169-182
  • 2 Casar Z. Curr. Org. Chem. 2010; 14: 816
    • 3a Hirai K, Ishiba T, Koika H, Watanabe M. US Patent 5260440, 1993
    • 3b Watanabe M, Koika H, Ishiba T, Okada T, Seo S, Hirai K. Bioorg. Med. Chem. 1997; 5: 437
    • 4a Konoike T, Araki Y. J. Org. Chem. 1994; 59: 7849
    • 4b Theisen PD, Heathcock CH. J. Org. Chem. 1988; 53: 2374
    • 4c Korostylev A, Andrushko V, Andrushko N, Tararov VI, König G, Börner A. Eur. J. Org. Chem. 2008; 840
    • 5a Narasaka K, Pai CH. Chem. Lett. 1980; 9: 1415
    • 5b Chen KM, Gunderson KG, Hardtmann GE, Prasad K, Repic O, Shapiro MJ. Chem. Lett. 1987; 16: 1923
    • 5c Chen KM, Hardtmann GE, Prasad K, Repic O, Shapiro MJ. Tetrahedron Lett. 1987; 28: 155
    • 6a Diorazia LT, Kobaki M, Koika H, Taylor NP. WO 2000049014 A1, 2000
    • 6b Joshi N, Bhirud S, Chandrasekhar B, Rao K, Damle S. US Patent 0124639 A, 2005
    • 6c Anegondi SP, Rajmahendra S, Joseph J, Srinivas PV. WO 2010023678 A1, 2010
    • 6d Pandya VP, Richhariya S, Divya P, Meeran HN. P. N, Tewari N. WO 2011132172 A1, 2011
    • 6e Akio M, Mizuho O, Yasuhiro K, Junichi C. US Patent 7304156 B2, 2007
    • 7a Hirai K, Ishiba T, Koika H, Watanabe M. EP0521471 B1, 2000
    • 7b Diorazia LT, Kobaki M, Koika H, Taylor NP. WO 2000049014 A1, 2000
    • 7c Creekmore JR, Wiggins NA. US Patent 6316460 B1, 2001
    • 7d Okada T, Horbury J, Dermot D, Laffan P. WO 2005042522 A1, 2005
    • 7e Horbury J, Taylor NP. US Patent 7511140, 2009
    • 7f Reddy MS, Rajan ST, Reddy MS. US Patent 8455640 B2, 2013
    • 7g Okada T, Horbury J, Laffan P. US Patent 0301348 A1, 2011
    • 8a Wess G, Kesseler K, Baader E, Bartmann W, Beck G. DE 3741509 A1, 1988
    • 8b Wess G, Kesseler K, Baader E, Bartmann W, Beck G, Bergmann A, Jendralla H, Bock K, Holzstein G, Kleine H, Schnierer M. Tetrahedron Lett. 1990; 31: 2545
    • 8c Choi H, Shin H. Synlett 2008; 1523
    • 8d Beck G, Jendralla H, Kesseler K. Synthesis 1995; 1014
    • 8e Urabe H, Matsuka T, Sate F. Tetrahedron Lett. 1993; 33: 4183
    • 8f Lee GT, Linder J, Chen KM, Prasad K, Repic O, Hardtmann GE. Synlett 1990; 508
    • 8g Prasad K, Chen KM, Repic O, Hardtmann GE. Tetrahedron: Asymmetry 1990; 1: 307
    • 8h Muller M. Angew. Chem. Int. Ed. 2005; 44: 362
    • 9a Minami T, Hiyama T. Tetrahedron Lett. 1992; 33: 7525
    • 9b Takahashi K, Minami T, Hiyama T. Tetrahedron Lett. 1993; 34: 513
    • 9c Hiyama T, Minami T, Takahashi K. Bull. Chem. Soc. Jpn. 1995; 68: 364
    • 9d Solladié G, Bauder C, Rossi L. J. Org. Chem. 1995; 60: 7774
    • 9e Honda T, Ono S, Mizutani H, Hallinan KO. Tetrahedron: Asymmetry 1997; 8: 181
    • 9f Shin HI, Choi BS, Lee KK, Choi H, Chang JH, Lee KW, Nam DH, Kim NS. Synthesis 2004; 2629
  • 10 Apparao T, Ghosh PK, Pradhan BS, Rangarao Ch, Vempala N. WO 2012032534 A3, 2012
  • 11 Humphlett WJ. Carbohydr. Res. 1967; 4: 157
  • 12 Isbell HS. Methods Carbohydr. Chem. 1963; 2: 13
  • 13 A similar type of β-elimination was observed in aldonolactones, see: Varela OJ, Cireli AF, De Lederkremer RM. Carbohydr. Res. 1979; 70: 27
    • 14a Takahashi K, Minami T, Ohara Y, Hiyama T. Tetrahedron Lett. 1993; 34: 8263
    • 14b Takahashi K, Minami T, Ohara Y, Hiyama T. Bull. Chem. Soc. Jpn. 1995; 68: 2649
  • 15 Ding X, Wang W, Kong F. Carbohydr. Res. 1997; 303: 445
  • 16 Kitamura M, Isobe M, Ichikawa Y, Goto T. J. Am. Chem. Soc. 1984; 106: 3252
    • 17a Zemplén G, Kuntz A. Ber. Dtsch. Chem. Ges. 1924; 57B: 1357
    • 17b Wang Z. Comprehensive Organic Name Reactions and Reagents. John Wiley & Sons; Hoboken: 2010: 3123-3128
    • 18a Lebedev OL, Kazarnovskii SN. Zh. Obshch. Khim. 1960; 30: 1631
    • 18b Gudipati S, Katakam S, Sagyam RR, Kudavalli JS. US Patent 7161004 B2, 2007