Synthesis 2016; 48(23): 4081-4090
DOI: 10.1055/s-0035-1562724
paper
© Georg Thieme Verlag Stuttgart · New York

A Modular Four-Component Route to Substituted 1,7,9-Decatrien-3-ones Using a Chloro-Substituted Phosphorane as Key C3 Building Block

Jutta Thiemermann (née Suhrbier)
a   Fachrichtung Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany
,
Michal Sascha Andrä
b   Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany   Email: hans.reissig@chemie.fu-berlin.de
,
Jürgen Schnaubelt
a   Fachrichtung Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany
,
Dieter Lentz
b   Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany   Email: hans.reissig@chemie.fu-berlin.de
,
Reinhold Zimmer
b   Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany   Email: hans.reissig@chemie.fu-berlin.de
,
Hans-Ulrich Reissig*
b   Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany   Email: hans.reissig@chemie.fu-berlin.de
› Author Affiliations
Further Information

Publication History

Received: 09 June 2016

Accepted after revision: 27 June 2016

Publication Date:
26 July 2016 (online)


Abstract

An efficient and flexible four-component route to substituted 1,7,9-decatrien-3-ones was established by alkylation of sodium dialkyl malonates with a chloro-substituted phosphorane followed by a Wittig reaction with the corresponding carbonyl compound. The resulting enones were alkylated at their malonate unit with sorbyl bromide to give the title compounds in good overall yields. In an attempt to improve the overall yield by using in situ generated sorbyl tosylate we discovered the formation of an unusual bicyclic product with a 3-oxocyclopenta[b]furan core that is formally generated by an oxidative dimerization of the employed precursor enone. The structure of this compound was unambiguously determined by an X-ray crystal analysis.

Supporting Information

 
  • References


    • Reviews:
    • 1a Brieger G, Bennett JN. Chem. Rev. 1980; 80: 63
    • 1b Roush WR. Intramolecular Diels–Alder Reactions . In Comprehensive Organic Synthesis . Vol. 5. Trost BM, Fleming I. Elsevier; Amsterdam: 1991: 513
    • 1c Takao K, Munakata R, Tadano K. Chem. Rev. 2005; 105: 4779
    • 1d Juhl M, Tanner D. Chem. Soc. Rev. 2009; 38: 2983

      Selected recent examples:
    • 2a O’Leary-Steele C, Pedersen PJ, James T, Lanyon-Hogg T, Leach S, Hayes J, Nelson A. Chem. Eur. J. 2010; 16: 9563
    • 2b Abdelkafi H, Evanno L, Deville A, Dubost L, Chiaroni A, Nay B. Eur. J. Org. Chem. 2011; 2789
    • 2c Ross AG, Li X, Danishefsky SJ. J. Am. Chem. Soc. 2012; 134: 16080
    • 2d Ramanathan M, Tan C.-J, Chang W.-J, Tsai H.-HG, Hou D.-R. Org. Biomol. Chem. 2013; 11: 3846
    • 2e Han J.-C, Liu L.-Z, Chang Y.-Y, You G.-Z, Guo J, Zhou L.-Y, Li C.-C, Yang Z. J. Org. Chem. 2013; 78: 5492
    • 2f Gärtner M, Satyanarayana G, Förster S, Helmchen G. Chem. Eur. J. 2013; 19: 400
    • 2g Wang Y, Rogachev V, Wolter M, Gruner M, Jäger A, Metz P. Eur. J. Org. Chem. 2014; 4083
    • 2h Usui K, Suzuki T, Nakada M. Tetrahedron Lett. 2015; 56: 1247
    • 3a Zschiesche R, Grimm EL, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1986; 25: 1086 ; Angew. Chem. 1986, 98, 1104
    • 3b Zschiesche R, Frey B, Grimm E, Reissig H.-U. Chem. Ber. 1990; 123: 363
    • 3c Frey B, Hünig S, Koch M, Reissig H.-U. Synlett 1991; 854
    • 3d Frey B, Schnaubelt J, Reissig H.-U. Eur. J. Org Chem. 1999; 1377
    • 3e Frey B, Schnaubelt J, Reissig H.-U. Eur. J. Org. Chem. 1999; 1385
    • 3f Schnaubelt J, Frey B, Reissig H.-U. Helv. Chim. Acta 1999; 82: 666
    • 3g Frey B, Reissig H.-U. J. Prakt. Chem. 1999; 341: 173

      Reviews:
    • 4a Reissig H.-U. Top. Curr. Chem. 1988; 144: 73
    • 4b Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
  • 5 Hudson RF, Chopard PA. J. Org. Chem. 1963; 28: 2446
  • 6 Piers E, Abeysekara B. Can. J. Chem. 1982; 60: 1114
    • 7a Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T. Tetrahedron Lett. 1984; 25: 2183
    • 7b Rathke MW, Nowak M. J. Org. Chem. 1985; 50: 2624
  • 8 Review: Johnson CD. Acc. Chem. Res. 1993; 26: 476
    • 9a Jacobson M. J. Am. Chem. Soc. 1955; 77: 2461
    • 9b Mori K. Tetrahedron 1974; 30: 3807
    • 9c Kim T, Mirafzal GA, Liu J, Bauld N. J. Am. Chem. Soc. 1993; 115: 7653
  • 10 Woodward RB. J. Am. Chem. Soc. 1940; 62: 1478
  • 11 Bäckvall JE, Nilsson YI. M, Andersson PG. J. Am. Chem. Soc. 1993; 115: 6609
  • 12 Andersson PG, Bäckvall JE. J. Org. Chem. 1991; 56: 5349
  • 13 Burke LT, Dixon DJ, Ley SV, Rodríguez F. Org. Biomol. Chem. 2005; 3: 274
  • 14 Farrugia LJ. J. Appl. Crystallogr. 1997; 30: 565
  • 15 As an alternative, deprotonated 4 may first add to enone 4 followed by reaction with tosyl chloride to introduce an additional double bond, double-cyclization and protonation to 23. Currently, there are no arguments available favoring or disfavoring this mechanistic scenario.

    • Selected examples for the use of phosphorane 1 for the synthesis of heterocycles or enones, see:
    • 16a Flitsch W, Hohenhorst M. Liebigs Ann. Chem. 1990; 397
    • 16b Caballero E, Guilhot F, López JL, Medarde M, Sahagún H, Tomé F. Tetrahedron Lett. 1996; 37: 6951
    • 16c Alajarí M, Cabrera J, Pastor A, Sánchez-Andrada P, Bautista D. J. Org. Chem. 2008; 73: 963
    • 16d Sieng B, Ventura OL, Bellosta V, Cossy J. Synlett 2008; 1216
    • 16e Sasaki M, Oyamada K, Takeda K. J. Org. Chem. 2010; 75: 3941
    • 16f Clark JS, Romiti F, Sieng B, Paterson LC, Stewart A, Chaudhury S, Thomas LH. Org. Lett. 2015; 17: 4694
  • 17 Thiemermann J.; Schnaubelt, J.; Zimmer, R.; Reissig, H.-U. Manuscript in preparation.
  • 19 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
  • 20 CCDC 1483329 (23) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif or by writing to the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44 1223 336 033; E-mail: deposit@ccdc.cam.ac.uk.