Synlett 2016; 27(16): 2345-2351
DOI: 10.1055/s-0035-1562511
letter
© Georg Thieme Verlag Stuttgart · New York

Synthetic Study on Carthamin: Problem and Solution for Oxidative Dearomatization Approach to Quinol C-Glycoside

Taiki Hayashi
Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan   Email: kohmori@chem.titech.ac.jp   Email: ksuzuki@chem.titech.ac.jp
,
Ken Ohmori*
Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan   Email: kohmori@chem.titech.ac.jp   Email: ksuzuki@chem.titech.ac.jp
,
Keisuke Suzuki*
Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan   Email: kohmori@chem.titech.ac.jp   Email: ksuzuki@chem.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 30 April 2016

Accepted after revision: 31 May 2016

Publication Date:
05 July 2016 (online)


Abstract

Synthetic study on carthamin, a natural red pigment, is described. Attempts at the construction of the key quinol C-glycoside structure by oxidative dearomatization of C-glycosyl phenols were hampered by the competing cleavage of the C1–C2 bond in the sugar moiety. By employing the 2-O-acetyl protection, the projected reaction proceeded smoothly, giving the desired products in good to excellent yields. An interesting photochemical stability/instability of the chalcone geometry in the synthetic compounds was observed.

Supporting Information

 
  • References and Notes

  • 1 Kametaka T, Perkin AG. J. Chem. Soc. Trans. 1910; 97: 1415
    • 2a Kuroda C. J. Chem. Soc. 1930; 752
    • 2b Seshadri TR, Thakur RS. Curr. Sci. 1960; 29: 54
    • 2c Obara H, Onodera J. Chem. Lett. 1979; 8: 201
    • 2d Obara H, Onodera J, Shirasaki F. Chem. Lett. 1980; 9: 1095
    • 2e Takahashi Y, Miyasaka N, Tasaka S, Miura I, Urano S, Ikura M, Hikichi K, Matsumoto T, Wada M. Tetrahedron Lett. 1982; 23: 5163
    • 2f Obara H, Namai S, Machida Y. Chem. Lett. 1986; 15: 495
    • 2g Sato S, Obara H, Kumazawa T, Onodera J, Furuhata K. Chem. Lett. 1996; 25: 833
    • 2h Sato S, Kumazawa T, Watanabe H, Takayanagi K, Matsuba S, Onodera J, Obara H, Furuhata K. Chem. Lett. 2001; 30: 1318
  • 3 Suzuki K. Chem. Rec. 2010; 10: 291
  • 4 Obara H, Matsui Y, Namai S, Machida Y. Chem. Lett. 1984; 13: 1397
    • 5a Tamura Y, Yakura T, Haruta J, Kita Y. J. Org. Chem. 1987; 52: 3927

    • For contributions from our laboratory, see:
    • 5b Yasui Y, Koga Y, Suzuki K, Matsumoto T. Synlett 2004; 615
    • 5c Yasui Y, Suzuki K, Matsumoto T. Synlett 2004; 619
    • 5d Morita M, Ohmori K, Suzuki K. Org. Lett. 2015; 17: 5634

    • For reviews, see:
    • 5e Pouysegu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 5f Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
    • 6a Rosenbrook Jr. Wm, Riley DA, Lartey PA. Tetrahedron Lett. 1985; 26: 3
    • 6b Posner GH, Haines SR. Tetrahedron Lett. 1985; 26: 5
  • 7 See Supporting Information

    • For early examples of the Friedel–Crafts C-glycosylation of phloroglucinol derivatives, see:
    • 8a Schmidt RR, Hoffmann M. Tetrahedron Lett. 1982; 23: 409
    • 8b Stewart AO, Williams RM. J. Am. Chem. Soc. 1985; 107: 4289
    • 8c Schmidt RR, Effenberger G. Carbohydr. Res. 1987; 171: 59
    • 8d Matsumoto T, Katsuki M, Suzuki K. Tetrahedron Lett. 1989; 30: 833

      For related examples, see:
    • 9a Sato S, Nojiri T, Onodera J. Carbohydr. Res. 2005; 340: 389
    • 9b Mitra P, Behera B, Maiti TK, Mal D. J. Org. Chem. 2013; 78: 9748

      For the pertinent examples, see:
    • 10a Fox AR, Pausacker KH. J. Chem. Soc. 1957; 295
    • 10b Spyroudis S, Tarantili P. Tetrahedron 1994; 50: 11541
  • 11 Prepared by the nucleophilic addition of the aryllithium species to d-gluconolactone followed by the hydride reduction. For details, see the Supporting Information. See also: Lewis MD, Cha JK, Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
  • 12 Oyama K, Kondo T. J. Org. Chem. 2004; 69: 5240
  • 13 Griffith WP, Ley SV, Whitcombe GP, White AD. J. Chem. Soc., Chem. Commun. 1987; 1625
  • 14 Solntsev KM, McGrier PL, Fahrni CJ, Tolbert LM, Bunz UH. F. Org. Lett. 2008; 10: 2429
  • 15 Fletcher S, Gunning PT. Tetrahedron Lett. 2008; 49: 4817
  • 16 Crystallographic data for compound 29 have been deposited with the accession number CCDC 1472113 and can be obtained free of charge via www.ccdc.cam.ac.uk/getstructures.
  • 17 The reason for the stereoselectivity in the dearomatization step is not clarified. Further study is in progress in our laboratory.
  • 18 The specific rotations of triketones 31 and 32 did not match the reported values by Sato:2h 31: [α]D 24 –4.5 (c 0.50, CHCl3), cf. lit. [α]D 24 –49.8 (c 1.02, CHCl3); 32: [α]D 24 –47 (c 0.34, CHCl3), cf. lit. [α]D 24 –6.23 (c 0.995, CHCl3).
  • 19 For controversy of keto–enol form of quinochalcones, see: Feng ZM, He J, Jiang JS, Chen Z, Yang YN, Zhang PC. J. Nat. Prod. 2013; 76: 270
  • 20 Arai T, Tokumaru K. Chem. Rev. 1993; 93: 23
    • 21a Arai T, Norikane Y. Chem. Lett. 1997; 26: 339
    • 21b Norikane Y, Itoh H, Arai T. Chem. Lett. 2000; 29: 1094

    • For theoretical treatment, see:
    • 21c Norikane Y, Itoh H, Arai T. J. Phys. Chem. A 2002; 106: 2766
    • 21d Norikane Y, Nakayama N, Tamaoki N, Arai T, Nagashima U. J. Phys. Chem. A 2003; 107: 8659