Synlett 2016; 27(15): 2269-2273
DOI: 10.1055/s-0035-1562499
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free, DTBP-Mediated Methylthiolation of Arylboronic Acids with Dimethyldisulfide

Xiang-mei Wu*
Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, P. R. of China   Email: lswxm7162@163.com   Email: gbyan@lsu.edu.cn
,
Jia-ming Lou
Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, P. R. of China   Email: lswxm7162@163.com   Email: gbyan@lsu.edu.cn
,
Guo-bing Yan*
Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, P. R. of China   Email: lswxm7162@163.com   Email: gbyan@lsu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 18 April 2016

Accepted after revision: 24 May 2016

Publication Date:
27 June 2016 (online)


Abstract

An efficient method for the C–S bond formation via the coupling reaction of arylboronic acids with dimethyldisulfide has been developed under the metal-free conditions. This novel protocol provides an attractive route for the synthesis of aryl methyl sulfides, due to its operational simplicity, satisfactory yields, excellent functional-group tolerance, as well as the mild reaction conditions.

Supporting Information

 
  • References and Notes

    • 1a Kalgutkar AS, Kozak KR, Crews BC, Marnett LJ. J. Med. Chem. 1998; 41: 4800
    • 1b Laufer SA, Striegel H.-G, Wagner GK. J. Med. Chem. 2002; 45: 4695
    • 1c Gallardo-Godoy A, Fierro A, McLean TH, Castillo M, Cassels BK, Reyes-Parada M, Nichols DE. J. Med. Chem. 2005; 48: 2407
    • 1d Pradhan TK, De A, Mortier J. Tetrahedron 2005; 61: 9007
    • 2a Dubbaka SR, Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
    • 2b Prokopcová H, Kappe CO. Angew. Chem. Int. Ed. 2009; 48: 2276
    • 2c Eberhart AJ, Imbriglio JE, Procter DJ. Org. Lett. 2011; 13: 5882
    • 2d Ookubo Y, Wakamiya A, Yorimitsu H, Osuka A. Chem. Eur. J. 2012; 18: 12690
    • 2e Modha SG, Mehta VP, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 5042
    • 2f Hooper JF, Young RD, Pernik I, Weller AS, Willis MC. Chem. Sci. 2013; 4: 1568
    • 2g Liu J.-X, Liu Y.-J, Du W.-T, Dong Y, Liu J, Wang M. J. Org. Chem. 2013; 78: 7293
    • 2h Pan F, Wang H, Shen P.-X, Zhao J, Shi Z.-J. Chem. Sci. 2013; 4: 1573
    • 2i Wang L, He W, Yu Z. Chem. Soc. Rev. 2013; 42: 599
    • 2j Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
    • 2k Otsuka S, Fujino D, Murakami K, Yorimitsu H, Osuka A. Chem. Eur. J. 2014; 20: 13146
    • 2l Quan Z.-J, Lv Y, Jing F.-Q, Jia X.-D, Huo C.-D, Wang X.-C. Adv. Synth. Catal. 2014; 356: 325
    • 2m Zhu F, Wang Z.-X. Org. Lett. 2015; 17: 1601
    • 3a Ram VJ, Agarwal N. Tetrahedron Lett. 2001; 42: 7127
    • 3b Sugahara T, Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
    • 4a Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC. J. Am. Chem. Soc. 2012; 134: 2906
    • 4b Arambasic M, Hooper JF, Willis MC. Org. Lett. 2013; 15: 5162
    • 4c Iwasaki M, Topolovčan N, Hu H, Nishimura Y, Gagnot G, Na Nakorn R, Yuvacharaskul R, Nakajima K, Nishihara Y. Org. Lett. 2016; 18: 1642
    • 5a Migita T, Shimizu T, Asami Y, Shiobara J.-I, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
    • 5b Mann G, Baranano D, Hartwig JF, Rheingold AL, Guzei IA. J. Am. Chem. Soc. 1998; 120: 9205
    • 5c Li GY, Zheng G, Noonan AF. J. Org. Chem. 2001; 66: 8677
    • 5d Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 5e Mispelaere-Canivet C, Spindler J.-F, Perrioa S, Beslin P. Tetrahedron 2005; 61: 5253
    • 5f Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 5g Dahl T, Tornøe CW, Bang-Andersen B, Nielsen P, Jøgensen M. Angew. Chem. Int. Ed. 2008; 47: 1726
    • 5h Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 6a Cristau HJ, Chabaud B, Chêne A, Christol H. Synthesis 1981; 892
    • 6b Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1995; 60: 6895
    • 6c Millois C, Diaz P. Org. Lett. 2000; 2: 1705
    • 6d Zhang Y, Ngeow KC, Ying JY. Org. Lett. 2007; 9: 3495
    • 7a Kwong FY, Buchwald SL. Org. Lett. 2002; 4: 3517
    • 7b Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803
    • 7c Enguehard-Gueiffier C, Thery I, Gueiffier A, Buchwald SL. Tetrahedron 2006; 62: 6042
    • 7d Carril M, SanMartin R, Dominguez E, Tellitu I. Chem. Eur. J. 2007; 13: 5100
    • 7e Zhang H, Cao W, Ma D. Synth. Commun. 2007; 37: 25
    • 7f Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609
    • 7g Verma AK, Singh J, Chaudhary R. Tetrahedron Lett. 2007; 48: 7199
    • 7h Lv X, Bao W. J. Org. Chem. 2007; 72: 3863
  • 8 Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613
    • 9a Reddy VP, Swapna K, Kumar AV, Rao KR. J. Org. Chem. 2009; 74: 3189
    • 9b Reddy VP, Swapna K, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 1697
    • 10a Campbell JR. J. Org. Chem. 1964; 29: 1830
    • 10b Yamamoto T, Sekine Y. Can. J. Chem. 1984; 62: 1544
    • 10c Lindley J. Tetrahedron 1984; 40: 1433
    • 10d Hickman RJ. S, Christie BJ, Guy RW, White TJ. Aust. J. Chem. 1985; 38: 899
    • 11a Stoll AH, Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 606
    • 11b Cheng J.-H, Ramesh C, Kao H.-L, Wang Y.-J, Chan C.-C, Lee C.-F. J. Org. Chem. 2012; 77: 10369
    • 12a Kukushkin VY. Coord. Chem. Rev. 1995; 139: 375
    • 12b Fernandes AC, Fernandes JA, Romao CC, Veiros LF, Calhorda MJ. Organometallics 2010; 29: 5517
  • 13 Basu B, Paul S, Nanda AK. Green Chem. 2010; 12: 767
  • 14 Baldovino-Pantaleón O, Hernández-Ortega S, Morales-Morales D. Adv. Synth. Catal. 2006; 348: 236
    • 15a Stanetty P, Koller H, Mihovilovic M. J. Org. Chem. 1992; 57: 6833
    • 15b Pratt SA, Goble MP, Mulvaney MJ, Wuts PG. M. Tetrahedron Lett. 2000; 41: 3559
    • 15c Fort Y, Rodriguez AL. J. Org. Chem. 2003; 68: 4918
  • 16 Majek M, Wangelin AJ. V. Chem. Commun. 2013; 49: 5507
    • 17a Luo F, Pan C, Li L, Chen F, Cheng J. Chem. Commun. 2011; 47: 5304
    • 17b Joseph PJ. A, Priyadarshini S, Kantam ML, Sreedhar B. Tetrahedron 2013; 69: 8276
    • 17c Ghosh K, Ranjit S, Mal D. Tetrahedron Lett. 2015; 56: 5199
    • 18a She J, Jiang Z, Wang Y. Tetrahedron Lett. 2009; 50: 593
    • 18b Fu Z, Li Z, Xiong Q, Cai H. Eur. J. Org. Chem. 2014; 7798
    • 19a Chen X, Hao XS, Goodhue CE, Yu JQ. J. Am. Chem. Soc. 2006; 128: 6790
    • 19b Chu L, Yue X, Qing FL. Org. Lett. 2010; 12: 1644
    • 19c Dai C, Xu Z, Huang F, Yu Z, Gao YF. J. Org. Chem. 2012; 77: 4414
    • 19d Patil SM, Kulkarni S, Mascarenhas M, Sharma R, Roopan SM, Roychowdhury A. Tetrahedron 2013; 69: 8255
    • 19e Sharma P, Rohilla S, Jain N. J. Org. Chem. 2015; 80: 4116
    • 19f Zou JF, Huang WS, Li L, Xu Z, Zheng ZJ, Yang KF, Xu LW. RSC Adv. 2015; 5: 30389
    • 19g Xu Y, Cong T, Liu P, Sun P. Org. Biomol. Chem. 2015; 13: 9742
    • 20a Chan DM. T, Monaco Wang RP, Winters MP. Tetrahedron Lett. 1998; 39: 2933
    • 20b Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
    • 20c Lam PY. S, Clark CG, Saubern S, Adams J, Averill KM, Chan DM. T, Combs A. Synlett 2000; 674
    • 20d Collman JP, Zhong M. Org. Lett. 2000; 2: 1233
    • 20e Collman JP, Zhong M, Zeng L, Costanzo S. J. Org. Chem. 2001; 66: 1528
    • 20f Lam PY. S, Vincent G, Clark CG, Deudon S, Jadhav PK. Tetrahedron Lett. 2001; 42: 3415
    • 20g Antilla JC, Buchwald SL. Org. Lett. 2001; 3: 2077
    • 20h Yu S, Saenz J, Srirangam JK. J. Org. Chem. 2002; 67: 1699
    • 20i Chiang GC. H, Olsson T. Org. Lett. 2004; 6: 3079
    • 20j Lan JB, Chen L, Yu XQ, You JS, Xie RG. Chem. Commun. 2004; 40: 188
    • 20k Kantam ML, Venkanna GT, Sridhar C, Sreedhar B, Choudary BM. J. Org. Chem. 2006; 71: 9522
    • 20l Chen S, Huang H, Liu X, Shen J, Jiang H, Liu H. J. Comb. Chem. 2008; 10: 358
    • 20m Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2009; 48: 4235
    • 20n Liu B, Liu B, Zhou Y, Chen W. Organometallics 2010; 29: 1457
    • 20o Raghuvanshi DS, Gupta AK, Singh KN. Org. Lett. 2012; 14: 4326
    • 20p Zhou Y, Xie Y, Yang L, Xie P, Huang H. Tetrahedron Lett. 2013; 54: 2713
    • 20q Bruneau A, Brion J.-D, Alami M, Messaoudi S. Chem. Commun. 2013; 49: 8359
    • 20r Zhu C, Falck JR. Adv. Synth. Catal. 2014; 356: 2395
    • 20s Yoo W.-J, Tsukamoto T, Kobayashi S. Angew. Chem. Int. Ed. 2015; 54: 6587
    • 20t Roy S, Sarma MJ, Kashyap B, Phukan P. Chem. Commun. 2016; 52: 1170
    • 20u Mandal PS, Kumar AV. Synlett 2016; 27: 1408
    • 21a Sagar AD, Tale RH, Adude RN. Tetrahedron Lett. 2003; 44: 7061
    • 21b Inamoto K, Nozawa K, Yonemoto M, Kondo Y. Chem. Commun. 2011; 47: 11775
    • 21c Mulla SA. R, Inamdar SM, Pathan MY, Chavan SS. RSC Adv. 2012; 2: 12818
    • 21d Chen LS, Lang HY, Fang L, Zhu MY, Liu JQ, Yu JJ, Wang LM. Eur. J. Org. Chem. 2014; 4953
    • 21e LaBerge NA, Love JA. Eur. J. Org. Chem. 2015; 5546
  • 22 General Procedure Arylboronic acid (1.0 mmol), dimethyldisulfide (2.0 mmol), DTBP (3.0 mmol), and MeCN (2.0 mL) were taken in a sealed tube. The reaction mixture was stirred at 120 °C for 12 h in air. After cooling to room temperature, the product was diluted with H2O (5 mL) and extracted with EtOAc (4 × 10 mL). The extracts were combined and washed by brine (3 × 10 mL), dried over MgSO4, filtered, and evaporated, and purified by chromatography on silica gel to obtain the desired products with EtOAc–hexane (1:30 to 1:100 v/v). The products were characterized by their spectral and analytical data and compared with those of the known compounds (see Supporting Information). Typical Data for Representative Compound 4-Methylthioanisole (Table 2, Entry 2) Colorless oil. 1H NMR (300 MHz, CDCl3): δ = 7.17–7.14 (d, J = 8.1 Hz, 2 H), 7.08–7.05 (d, J = 8.1 Hz, 2 H), 2.42 (s, 3 H), 2.28 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 135.0, 134.8, 129.7, 127.3, 20.9, 16.5. GC-MS (EI): m/z = 138 [M+].
    • 23a Uchiyama N, Shirakawa E, Nishikawa R, Hayashi T. Chem. Commun. 2011; 47: 11671
    • 23b Yan GB, Yang MH, Wu XM. Org. Biomol. Chem. 2013; 11: 7999
    • 23c Liu D, Li Y, Qi X, Liu C, Lan Y, Lei A. Org. Lett. 2015; 17: 998