Synlett 2016; 27(16): 2352-2356
DOI: 10.1055/s-0035-1562468
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Activated Second-Generation Grubbs–Hoveyda Catalyst Driven by Intramolecular Steric Strain

Yuki Kobayashi
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Hiroki Miyazaki
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Sae Inukai
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Chika Takagi
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Reo Makino
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Kento Shimowaki
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Rina Igarashi
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Yuya Sugiyama
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Shuichi Nakamura
b   Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
,
Masato Matsugi*
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 21 April 2016

Accepted after revision: 08 June 2016

Publication Date:
13 July 2016 (online)


We would like to dedicate this letter to Prof. Takayuki Shioiri on his 80th birthday.

Abstract

Various Grubbs–Hoveyda second-generation catalysts activated by intramolecular steric strain were prepared. The variant bearing a 9-anthracenyl group in the ligand moiety exhibited the highest catalytic activity. The new anthracenyl-type-activated catalyst was used in a ring-closing metathesis reaction to effectively provide a 4-substituted product effectively.

Supporting Information

 
  • References and Notes

  • 1 Kingsbury JS, Harrity JP. A, Bonitatebus PJ, Hoveyda AH. J. Am. Chem. Soc. 1999; 121: 791
    • 2a Fürstner A. Alkene Metathesis in Organic Synthesis . Springer; New York: 1998
    • 2b Grubbs RH. Handbook of Metathesis . Wiley-VCH; Weinheim: 2003
    • 2c Wang H, Matsuhashi H, Doan BD, Goodman SN, Ouyang X, Clark WM. Tetrahedron 2009; 65: 6291
    • 2d Kong J, Chen C, Padros JB, Cao Y, Dunn RF, Dolman SJ, Janey J, Li H, Zacuto M. J. Org. Chem. 2012; 77: 3820

      For selected reviews, see:
    • 3a Fürstner A. Angew. Chem. Int. Ed. 2000; 39: 3012
    • 3b Connon SJ, Blechert S. Angew. Chem. Int. Ed. 2003; 42: 1900
    • 3c Clavier H, Grela K, Kirschning A, Mauduit M, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 6786
    • 3d Samojłowicz C, Bieniek C, Grela K. Chem. Rev. 2009; 109: 3708
    • 3e Higman CS, Lummiss JA. M, Fogg DE. Angew. Chem. Int. Ed. 2016; 55: 3552

      For selected examples, see:
    • 4a Berlin JM, Campbell K, Ritter T, Funk TW, Chlenov A, Grubbs RH. Org. Lett. 2007; 9: 1339
    • 4b Kuhn KM, Bourg J-B, Chung CK, Virgil SC, Grubbs RH. J. Am. Chem. Soc. 2009; 131: 5313
    • 4c Petit LV, Clavier H, Linden A, Blumentritt S, Nolan SP, Dorta R. Organometallics 2010; 29: 775
    • 4d Leitgeb A, Abbas M, Fischer RC, Poater A, Cavallo L, Slugovc C. Catal. Sci. Technol. 2012; 2: 1640
    • 4e Sauer DF, Himiyama T, Tachikawa K, Fukumoto K, Onoda A, Mizohata E, Inoue T, Bocola M, Schwaneberg U, Hayashi T, Okuda J. ACS Catal. 2015; 5: 7519

      For selected examples, see:
    • 5a Zaja M, Connon SJ, Dunne AM, Rivard M, Buschmann N, Jiricek J, Blechert S. Tetrahedron 2003; 59: 6545
    • 5b Dragutan V, Dragutan I. Platinum Met. Rev. 2005; 49: 33
    • 5c Barbasiewicz M, Bieniek M, Michrowska A, Szadkowska A, Makal A, Woźniak K, Grela K. Adv. Synth. Catal. 2007; 349: 193
    • 5d Matsugi M, Kobayashi Y, Suzumura N, Tsuchiya Y, Shioiri T. J. Org. Chem. 2010; 75: 7905
    • 5e Olszewski TK, Bieniek M, Skowerski K, Grela K. Synlett 2013; 24: 903

      For selected examples, see:
    • 6a Allen DP, Wingerden MM. V, Grubbs RH. Org. Lett. 2009; 11: 1261
    • 6b Cheong JL, Wong D, Lee S.-G, Lim J, Lee SS. Chem. Commun. 2015; 51: 1042
    • 6c Chen S.-W, Zhang Z.-C, Zhai N.-N, Zhong C.-M, Lee S.-G. Tetrahedron 2015; 71: 648
    • 6d Skowerski K, Białecki J, Czarnocki SJ, Żukowska K, Grela K. Beilstein J. Org. Chem. 2016; 12: 5
  • 7 Wakamatsu H, Blechert S. Angew. Chem. Int. Ed. 2002; 41: 2403
  • 8 Characterization Data of Catalyst 1c Green crystal, mp 169.0–171.5 °C. 1H NMR (270 MHz, CDCl3): δ = 0.75 (dd, J = 52.1, 6.2 Hz, 6 H), 2.50 (br s, 18 H), 4.06–4.18 (m, 5 H), 5.30 (s, 1 H), 6.96–7.06 (m, 6 H), 7.34–7.44 (m, 5 H), 7.76–7.82 (m, 3 H), 16.72 (s, 1 H). 13C NMR (68 MHz, CDCl3): δ = 18.5, 20.6, 21.0, 51.4, 77.7, 122.7, 123.1, 125.1, 126.1, 126.4, 127.0, 127.4, 128.0, 128.3, 128.4, 129.3, 131.9, 133.0, 138.8, 147.7, 149.8, 211.3, 299.3. IR: 2918, 1558, 1476, 1420, 1255, 1193, 1032, 777, 733, 646 cm–1. HRMS (FAB+): m/z calcd for C41H45Cl2N2ORu: 754.1952; found: 754.1942. Characterization Data of Catalyst 1d Green crystal, mp 172.5–173.2 °C. 1H NMR (270 MHz, CDCl3): δ = 0.67 (d, J = 6.21 Hz, 3 H), 0.90–0.93 (m, 3 H), 2.50 (br s, 18 H), 3.79 (s, 3 H), 4.15 (s, 4 H), 4.20–4.24 (m, 1 H), 6.93–7.04 (m, 4 H), 7.24–7.35 (m, 5 H), 7.48–7.54 (m, 2 H), 7.69–7.75 (m, 1 H), 7.82 (d, J = 9.18 Hz, 1 H), 16.64 (s, 1 H). 13C NMR (68 MHz, CDCl3): δ = 18.5, 20.8, 21.1, 51.6, 56.1, 77.8, 112.6, 121.8, 122.7, 122.9, 133.5, 135.7, 138.7, 147.5, 150.6, 153.7, 211.9, 299.5. HRMS (FAB+): m/z calcd for C42H47Cl2N2O2Ru: 784.2058; found: 784.2106. Characterization Data of Catalyst 1e Green crystal, mp 163.7–165.0 °C. 1H NMR (270 MHz, CDCl3): δ = 0.77 (dd, J = 62.6, 5.9 Hz, 6 H), 2.52 (br s, 18 H), 4.17–4.28 (m, 5 H), 6.95–7.03 (m, 6 H), 7.39–7.42 (m, 1 H), 7.50–8.71 (m, 8 H), 8.67 (d, J = 8.1 Hz, 2 H), 16.94 (s, 1 H). 13C NMR (68 MHz, CDCl3): δ = 20.4, 21.1, 21.3, 52.4, 77.8, 122.5, 123.0, 123.3, 126.8, 126.9, 127.0, 127.5, 127.7, 128.8, 130.3, 131.1, 131.3, 134.7, 136.3, 138.8, 147.5, 149.9, 211.3, 298.9. IR: 2920, 1480, 1424, 1255, 1203, 1097, 921, 851, 745, 720 cm–1. HRMS (FAB+): m/z calcd for C45H47Cl2N2ORu: 804.2187; found: 804.2195. Characterization Data of Catalyst 1f Green crystal, mp 172.3–173.7 °C. 1H NMR (270 MHz, CDCl3): δ = 0.57 (d, J = 6.2 Hz, 6 H), 2.52 (br s, 18 H), 3.82-3.92 (m, 1 H), 4.17 (s, 4 H), 6.96–7.10 (m, 6 H), 7.33–7.81 (m, 6 H), 7.88 (d, J = 36.5 Hz, 2 H), 7.98 (d, J = 1.6 Hz, 2 H), 8.43 (s, 1 H), 16.77 (s, 1 H). 13C NMR (68 MHz, CDCl3): δ = 18.4, 21.1, 21.4, 51.4, 78.6, 123.0, 123.0, 125.3, 125.4, 126.4, 127.0, 127.5, 128.2, 129.4, 130.2, 131.0, 133.0, 135.9, 147.8, 150.8, 211.3, 298.7. IR: 2917, 1481, 1443, 1255, 1197, 1098, 1014, 925, 886, 851, 732 cm–1. HRMS (FAB+): m/z calcd for C45H47Cl2N2ORu: 804.2187; found: 804.2167.
  • 9 Garber SB, Kingsbury JS, Gray BL, Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
  • 10 Characterization Data of Catalyst 1g Green crystal, mp 300 °C (dec.). 1H NMR (270 MHz, CDCl3): δ = 1.33 (d, J = 5.7 Hz, 6 H), 2.11–2.42 (br m, 18 H), 4.10 (s, 4 H), 4.92–5.01 (m, 1 H), 6.93–6.97 (m, 6 H), 7.28–7.50 (m, 6 H), 7.68 (d, J = 8.9 Hz, 2 H), 7.98 (d, J = 8.4 Hz, 2 H), 8.43 (s, 1 H), 16.64 (s, 1 H). 13C NMR (68 MHz, CDCl3): δ = 21.1, 21.4, 112.9, 125.1, 125.3, 125.5, 126.7, 127.3, 128.3, 129.5, 130.7, 131.4, 132.4, 132.6, 135.6, 139.0, 145.4, 152.0, 211.0, 296.4. HRMS (FAB+): m/z calcd for C45H48Cl2N2ORu: 804.2162; found: 804.2187.
  • 11 Kobayashi Y, Inukai S, Kondo N, Watanabe T, Sugiyama Y, Hamamoto H, Shioiri T, Matsugi M. Tetrahedron Lett. 2015; 56: 1363
  • 12 Fustero S, Fuentes AS, Barrio P, Haufe G. Chem. Rev. 2015; 115: 871
  • 13 Samojłowicz C, Bieniek M, Pazio A, Makal A, Woźniak K, Poater A, Cavallo L, Wójcik J, Zdanowski K, Grela K. Chem. Eur. J. 2011; 17: 12981

    • For B3LYP, see:
    • 14a Becke AD. J. Chem. Phys. 1993; 98: 5648

    • For LANL2DZ, see:
    • 14b Dunning TH, Hay PJ. Modern Theoretical Chemistry. Vol. 3. Plenum Press; New York: 1977
    • 14c Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 270
    • 14d Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 299
  • 15 Bondi A. J. Phys. Chem. 1964; 68: 441
  • 16 Garber SB, Kingsbury JS, Gray BL, Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
  • 17 The bond angle (O–Ru–C) of 1a was 79.0° (79.3° in X-ray) when calculated in the same method.

    • For selected reviews, see:
    • 18a Oki M. Acc. Chem. Res. 1990; 23 351
    • 18b Nishio M, Umezawa Y, Hirota M, Takeuchi Y. Tetrahedron 1995; 51: 8665
    • 18c Nishio M, Umezawa Y, Hirota M. The CH/π Interaction . Wiley-VCH; Weinheim: 1998
  • 19 Nishihata K, Nishio M. Tetrahedron Lett. 1977; 18: 1041
  • 20 Matsugi M, Itoh K, Nojima M, Hagimoto Y, Kita Y. Chem. Eur. J. 2002; 8: 5551
    • 21a Sanford MS, Ulman M, Grubbs RH. J. Am. Chem. Soc. 2001; 123: 749
    • 21b da Costa RC, Gladysz JA. Chem. Commun. 2006; 2619
    • 22a Love JA, Sanford MS, Day MW, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 10103
    • 22b Trzaskowski B, Grela K. Organometallics 2013; 32: 3625