Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(12): 1814-1819
DOI: 10.1055/s-0035-1561623
DOI: 10.1055/s-0035-1561623
letter
A Mild Strategy for the Preparation of Phenols via the Ligand-Free Copper-Catalyzed O-Arylation of para-Toluenesulfonic Acid
Further Information
Publication History
Received: 11 January 2016
Accepted after revision: 24 March 2016
Publication Date:
25 April 2016 (online)
Abstract
A facile and simple ligand-free copper-catalyzed reaction to synthesize substituted phenols is reported. The reaction presumably proceeds via an O-arylsulfonate intermediate that is hydrolyzed to afford good to excellent yields of up to 88%. This protocol provides an alternative to existing reports which use strong hydroxide salts as the direct hydroxylation partner. Demonstrating a wide substrate scope and functional group tolerance, this protocol can also be applied to inexpensive and commercially available carboxylic acids to yield phenols.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561623.
- Supporting Information
-
References and Notes
- 1a Pillai M, Kothari K, Jurisson S. Appl. Radiat. Isot. 1995; 46: 923
- 1b Pillai M, Barnes C, Schlemper E. Polyhedron 1994; 13: 701
- 1c Merlini L, Zanarotti A, Pelter A, Rochefort MP, Hänsel R. J. Chem. Soc., Perkin Trans. 1 1980; 775
- 1d Brezinsky K, Pecullan M, Glassman I. J. Phys. Chem. A 1998; 102: 8614
- 2a Uyama H, Lohavisavapanich C, Ikeda R, Kobayashi S. Macromolecules 1998; 31: 554
- 2b Serman CJ, Xu Y, Painter PC, Coleman MM. Polymer 1991; 32: 516
- 2c Serman CJ, Painter PC, Coleman MM. Polymer 1991; 32: 1049
- 3a Lloyd J In Techniques of Neurolysis . Springer; New York: 1989: 33-44
- 3b Kirazli Y, On AY, Kismali B, Aksit R. Am. J. Phys. Med. Rehabil. 1998; 77: 510
- 3c Cutting W, Mehrtens H, Tainter M. J. Am. Med. Assoc. 1933; 101: 193
- 4 Hock H, Lang S. Eur. J. Inorg. Chem. 1944; 77: 257
- 5 Weber M, Weber M, Kleine-Boymann M In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag; Weinheim: 2000
- 6a Cohen T, Dietz AG, Miser JR. J. Org. Chem. 1977; 42: 2053
- 6b Mo F, Dong G, Zhang Y, Wang J. Org. Biomol. Chem. 2013; 11: 1582
-
7 Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 14654
- 8a Anderson KW, Ikawa T, Tundel RE, Buchwald SL. J. Am. Chem. Soc. 2006; 128: 10694
- 8b Cheung CW, Buchwald SL. J. Org. Chem. 2014; 79: 5351
-
8c Sergeev AG, Schulz T, Torborg C, Spannenberg A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 7595
- 8d Yu C.-W, Chen GS, Huang C.-W, Chern J.-W. Org. Lett. 2012; 14: 3688
-
9a Tlili A, Xia N, Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 8725
- 9b Xiao Y, Xu Y, Cheon H.-S, Chae J. J. Org. Chem. 2013; 78: 5804
- 9c Yang D, Fu H. Chem. Eur. J. 2010; 16: 2366
- 9d Zhao D, Wu N, Zhang S, Xi P, Su X, Lan J, You J. Angew. Chem. Int. Ed. 2009; 48: 8729
- 9e Amal Joseph PJ, Priyadarshini S, Lakshmi Kantam M, Maheswaran H. Catal. Sci. Tech. 2011; 1: 582
- 9f Wang D, Kuang D, Zhang F, Tang S, Jiang W. Eur. J. Org. Chem. 2014; 315
- 9g Thakur KG, Sekar G. Chem. Commun. 2011; 47: 6692
-
9h Ding G, Han H, Jiang T, Wu T, Han B. Chem. Commun. 2014; 50: 9072
- 9i Jing L, Wei J, Zhou L, Huang Z, Li Z, Zhou X. Chem. Commun. 2010; 46: 4767
- 9j Chen J, Yuan T, Hao W, Cai M. Catal. Commun. 2011; 12: 1463
-
9k Yang K, Li Z, Wang Z, Yao Z, Jiang S. Org. Lett. 2011; 13: 4340
- 10a Gujadhur R, Venkataraman D, Kintigh JT. Tetrahedron Lett. 2001; 42: 4791
-
10b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 10c Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
- 11a Yong F.-F, Teo Y.-C, Tay S.-H, Tan BY.-H, Lim K.-H. Tetrahedron Lett. 2011; 52: 1161
- 11b Yong F.-F, Teo Y.-C, Chua G.-L, Lim GS, Lin Y. Tetrahedron Lett. 2011; 52: 1169
- 11c Tan BY.-H, Teo Y.-C, Seow A.-H. Eur. J. Org. Chem. 2014; 1541
- 12a Li C.-J, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
- 12b DeSimone JM. Science 2002; 297: 799
- 12c Capello C, Fischer U, Hungerbühler K. Green Chem. 2007; 9: 927
- 13a Yong F.-F, Teo Y.-C, Yan Y.-K, Chua G.-L. Synlett 2012; 101
- 13b Yang H, Xi C, Miao Z, Chen R. Eur. J. Org. Chem. 2011; 3353
- 13c Cristau H.-J, Cellier PP, Hamada S, Spindler J.-F, Taillefer M. Org. Lett. 2004; 6: 913
- 14a Strieter ER, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2008; 131: 78
- 14b Rao H, Fu H. Synlett 2011; 745
- 15 Yamamoto T. Synth. Commun. 1979; 9: 219
- 16 General Procedure for the Synthesis of Substituted Phenols via O-Arylation of p-Toluenesulfonic Acid: A mixture of Cu2O (Sigma-Aldrich, 99.99% purity, 0.147 mmol), Cs2CO3 (2.94 mmol), distilled H2O (0.2 mL), aryl halide (1.47 mmol) and p-toluenesulfonic acid (TsOH) solution (0.3 mL, 2.45 mol/dm3) were added to a reaction vial and a screw cap was fitted to it. The reaction mixture was stirred under air in a closed system at 120 °C for 24 h, following which the heterogeneous mixture was cooled to r.t. and diluted with CH2Cl2. The combined organic extracts were dried with anhyd Na2SO4 and the solvent was removed under reduced pressure. The crude product was loaded onto the silica gel column using minimal amounts of CH2Cl2 and was purified by silica gel column chromatography to afford the N-arylated product. Phenol (2a): Following the general procedure using p-toluenesulfonic acid solution (0.3 mL, 2.45 mol/dm3) and iodobenzene (0.165 mL, 1.47 mmol), the product (122 mg, 89% yield) was obtained as a colorless oil after purification by flash chromatography (hexane–EtOAc, 80:20). 1H NMR (400 MHz, CDCl3): δ = 7.23 (t, J = 8.6 Hz, 2 H), 6.92 (t, J = 7.6 Hz, 1 H), 6.83 (d, J = 7.6 Hz, 2 H), 5.67 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 155.3, 129.7, 120.9, 115.3. GC–MS: t R = 4.91 min, M/Z = 94. HRMS: m/z [M+] calcd for C6H6O: 95.0495; found: 95.0500. 2-Fluorophenol (2b): Following the general procedure using p-toluenesulfonic acid solution (0.3 mL, 2.45 mol/dm3) and 2-fluoroiodobenzene (0.172 mL, 1.47 mmol), the product (66 mg, 40% yield) was obtained as a colorless oil after purification by flash chromatography (hexane–EtOAc, 80:20). 1H NMR (400 MHz, CDCl3): δ = 7.02–7.17 (m, 3 H), 6.85–6.90 (m, 1 H), 5.59 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 151.1 (J = 236.2 Hz), 143.4 (J = 14.5 Hz), 124.8 (J = 3.1 Hz), 120.9 (J = 6.1 Hz), 117.4 (J = 2.2 Hz), 115.5 (J = 17.5 Hz). HRMS: m/z [M+] calcd for C6H5OF: 113.0400; found: 113.0393. 2′-Hydroxyacetophenone (2c): Following the general procedure using p-toluenesulfonic acid solution (0.3 mL, 2.45 mol/dm3) and 2′-iodoacetophenone (0.210 mL, 1.47 mmol), the product (140 mg, 70% yield) was obtained as a colorless oil after purification by flash chromatography (hexane–EtOAc, 90:10). 1H NMR (400 MHz, CDCl3): δ = 12.26 (br s, 1 H), 7.71 (d, J = 8.4 Hz, 1 H), 7.45 (t, J = 8.4 Hz, 1 H), 6.96 (d, J = 8.0 Hz, 1 H), 6.89 (t, J = 8.0 Hz, 1 H), 2.61 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 204.5, 162.3, 136.4, 130.7, 119.7, 118.9, 118.3, 26.6. HRMS: m/z [M+] calcd for C8H8O2: 137.0600; found: 137.0598. O-Cresol (2d): Following the general procedure using p-toluenesulfonic acid solution (0.3 mL, 2.45 mol/dm3) and 2-methyliodobenzene (0.188 mL, 1.47 mmol), the product (48 mg, 30% yield) was obtained as a colorless oil after purification by flash chromatography (hexane–EtOAc, 85:15). 1H NMR (400 MHz, CDCl3): δ = 7.09–7.17 (m, 2 H), 6.89 (t, J = 7.2 Hz, 1 H), 6.79 (d, J = 7.6 Hz, 1 H), 4.88 (br s, 1 H), 2.28 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 153.7, 131.0, 127.1, 123.8, 120.8, 114.9, 15.7. HRMS: m/z [M+] calcd for C7H8O: 109.0651; found: 109.0655.
For utility of phenols in synthetic chemistry, see:
For utility of phenols in material chemistry, see:
For utility of phenols in pharmaceuticals, see:
For reports on the synthesis of phenols through diazoarenes, see:
For reports on the palladium-catalyzed direct hydroxylation of aryl halides, see:
For reports on the copper-catalyzed direct hydroxylation of aryl halides, see:
For reports on low toxicity of copper catalyst, see:
For our group’s published ligand-free copper catalysis, see:
For reports on sustainable solvents in organic reactions, see:
For C–O cross-coupling reactions which encountered low yields with sterically hindered aryl halides, see:
For reports with mechanism for copper-catalyzed cross-coupling reactions, see: