Synlett 2016; 27(12): 1814-1819
DOI: 10.1055/s-0035-1561623
letter
© Georg Thieme Verlag Stuttgart · New York

A Mild Strategy for the Preparation of Phenols via the Ligand-Free Copper-Catalyzed O-Arylation of para-Toluenesulfonic Acid

Bryan Yong-Hao Tan
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Nanyang Walk, Singapore 637616, Singapore   Email: yongchua.teo@nie.edu.sg
,
Yong-Chua Teo*
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Nanyang Walk, Singapore 637616, Singapore   Email: yongchua.teo@nie.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 11 January 2016

Accepted after revision: 24 March 2016

Publication Date:
25 April 2016 (online)


Abstract

A facile and simple ligand-free copper-catalyzed reaction to synthesize substituted phenols is reported. The reaction presumably proceeds via an O-arylsulfonate intermediate that is hydrolyzed to afford good to excellent yields of up to 88%. This protocol provides an alternative to existing reports which use strong hydroxide salts as the direct hydroxylation partner. Demonstrating a wide substrate scope and functional group tolerance, this protocol can also be applied to inexpensive and commercially available carboxylic acids to yield phenols.

Supporting Information

 
  • References and Notes


    • For utility of phenols in synthetic chemistry, see:
    • 1a Pillai M, Kothari K, Jurisson S. Appl. Radiat. Isot. 1995; 46: 923
    • 1b Pillai M, Barnes C, Schlemper E. Polyhedron 1994; 13: 701
    • 1c Merlini L, Zanarotti A, Pelter A, Rochefort MP, Hänsel R. J. Chem. Soc., Perkin Trans. 1 1980; 775
    • 1d Brezinsky K, Pecullan M, Glassman I. J. Phys. Chem. A 1998; 102: 8614

      For utility of phenols in material chemistry, see:
    • 2a Uyama H, Lohavisavapanich C, Ikeda R, Kobayashi S. Macromolecules 1998; 31: 554
    • 2b Serman CJ, Xu Y, Painter PC, Coleman MM. Polymer 1991; 32: 516
    • 2c Serman CJ, Painter PC, Coleman MM. Polymer 1991; 32: 1049

      For utility of phenols in pharmaceuticals, see:
    • 3a Lloyd J In Techniques of Neurolysis . Springer; New York: 1989: 33-44
    • 3b Kirazli Y, On AY, Kismali B, Aksit R. Am. J. Phys. Med. Rehabil. 1998; 77: 510
    • 3c Cutting W, Mehrtens H, Tainter M. J. Am. Med. Assoc. 1933; 101: 193
  • 4 Hock H, Lang S. Eur. J. Inorg. Chem. 1944; 77: 257
  • 5 Weber M, Weber M, Kleine-Boymann M In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag; Weinheim: 2000

    • For reports on the synthesis of phenols through diazoarenes, see:
    • 6a Cohen T, Dietz AG, Miser JR. J. Org. Chem. 1977; 42: 2053
    • 6b Mo F, Dong G, Zhang Y, Wang J. Org. Biomol. Chem. 2013; 11: 1582
  • 7 Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 14654

    • For reports on the palladium-catalyzed direct hydroxylation of aryl halides, see:
    • 8a Anderson KW, Ikawa T, Tundel RE, Buchwald SL. J. Am. Chem. Soc. 2006; 128: 10694
    • 8b Cheung CW, Buchwald SL. J. Org. Chem. 2014; 79: 5351
    • 8c Sergeev AG, Schulz T, Torborg C, Spannenberg A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 7595
    • 8d Yu C.-W, Chen GS, Huang C.-W, Chern J.-W. Org. Lett. 2012; 14: 3688

      For reports on the copper-catalyzed direct hydroxylation of aryl halides, see:
    • 9a Tlili A, Xia N, Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 8725
    • 9b Xiao Y, Xu Y, Cheon H.-S, Chae J. J. Org. Chem. 2013; 78: 5804
    • 9c Yang D, Fu H. Chem. Eur. J. 2010; 16: 2366
    • 9d Zhao D, Wu N, Zhang S, Xi P, Su X, Lan J, You J. Angew. Chem. Int. Ed. 2009; 48: 8729
    • 9e Amal Joseph PJ, Priyadarshini S, Lakshmi Kantam M, Maheswaran H. Catal. Sci. Tech. 2011; 1: 582
    • 9f Wang D, Kuang D, Zhang F, Tang S, Jiang W. Eur. J. Org. Chem. 2014; 315
    • 9g Thakur KG, Sekar G. Chem. Commun. 2011; 47: 6692
    • 9h Ding G, Han H, Jiang T, Wu T, Han B. Chem. Commun. 2014; 50: 9072
    • 9i Jing L, Wei J, Zhou L, Huang Z, Li Z, Zhou X. Chem. Commun. 2010; 46: 4767
    • 9j Chen J, Yuan T, Hao W, Cai M. Catal. Commun. 2011; 12: 1463
    • 9k Yang K, Li Z, Wang Z, Yao Z, Jiang S. Org. Lett. 2011; 13: 4340

      For reports on low toxicity of copper catalyst, see:
    • 10a Gujadhur R, Venkataraman D, Kintigh JT. Tetrahedron Lett. 2001; 42: 4791
    • 10b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 10c Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337

      For our group’s published ligand-free copper catalysis, see:
    • 11a Yong F.-F, Teo Y.-C, Tay S.-H, Tan BY.-H, Lim K.-H. Tetrahedron Lett. 2011; 52: 1161
    • 11b Yong F.-F, Teo Y.-C, Chua G.-L, Lim GS, Lin Y. Tetrahedron Lett. 2011; 52: 1169
    • 11c Tan BY.-H, Teo Y.-C, Seow A.-H. Eur. J. Org. Chem. 2014; 1541

      For reports on sustainable solvents in organic reactions, see:
    • 12a Li C.-J, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
    • 12b DeSimone JM. Science 2002; 297: 799
    • 12c Capello C, Fischer U, Hungerbühler K. Green Chem. 2007; 9: 927

      For C–O cross-coupling reactions which encountered low yields with sterically hindered aryl halides, see:
    • 13a Yong F.-F, Teo Y.-C, Yan Y.-K, Chua G.-L. Synlett 2012; 101
    • 13b Yang H, Xi C, Miao Z, Chen R. Eur. J. Org. Chem. 2011; 3353
    • 13c Cristau H.-J, Cellier PP, Hamada S, Spindler J.-F, Taillefer M. Org. Lett. 2004; 6: 913

      For reports with mechanism for copper-catalyzed cross-coupling reactions, see:
    • 14a Strieter ER, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2008; 131: 78
    • 14b Rao H, Fu H. Synlett 2011; 745
  • 15 Yamamoto T. Synth. Commun. 1979; 9: 219
  • 16 General Procedure for the Synthesis of Substituted Phenols via O-Arylation of p-Toluenesulfonic Acid: A mixture of Cu2O (Sigma-Aldrich, 99.99% purity, 0.147 mmol), Cs2CO3 (2.94 mmol), distilled H2O (0.2 mL), aryl halide (1.47 mmol) and p-toluenesulfonic acid (TsOH) solution (0.3 mL, 2.45 mol/dm3) were added to a reaction vial and a screw cap was fitted to it. The reaction mixture was stirred under air in a closed system at 120 °C for 24 h, following which the heterogeneous mixture was cooled to r.t. and diluted with CH2Cl2. The combined organic extracts were dried with anhyd Na2SO4 and the solvent was removed under reduced pressure. The crude product was loaded onto the silica gel column using minimal amounts of CH2Cl2 and was purified by silica gel column chromatography to afford the N-arylated product. Phenol (2a): Following the general procedure using p-toluenesulfonic acid solution (0.3 mL, 2.45 mol/dm3) and iodobenzene (0.165 mL, 1.47 mmol), the product (122 mg, 89% yield) was obtained as a colorless oil after purification by flash chromatography (hexane–EtOAc, 80:20). 1H NMR (400 MHz, CDCl3): δ = 7.23 (t, J = 8.6 Hz, 2 H), 6.92 (t, J = 7.6 Hz, 1 H), 6.83 (d, J = 7.6 Hz, 2 H), 5.67 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 155.3, 129.7, 120.9, 115.3. GC–MS: t R = 4.91 min, M/Z = 94. HRMS: m/z [M+] calcd for C6H6O: 95.0495; found: 95.0500. 2-Fluorophenol (2b): Following the general procedure using p-toluenesulfonic acid solution (0.3 mL, 2.45 mol/dm3) and 2-fluoroiodobenzene (0.172 mL, 1.47 mmol), the product (66 mg, 40% yield) was obtained as a colorless oil after purification by flash chromatography (hexane–EtOAc, 80:20). 1H NMR (400 MHz, CDCl3): δ = 7.02–7.17 (m, 3 H), 6.85–6.90 (m, 1 H), 5.59 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 151.1 (J = 236.2 Hz), 143.4 (J = 14.5 Hz), 124.8 (J = 3.1 Hz), 120.9 (J = 6.1 Hz), 117.4 (J = 2.2 Hz), 115.5 (J = 17.5 Hz). HRMS: m/z [M+] calcd for C6H5OF: 113.0400; found: 113.0393. 2′-Hydroxyacetophenone (2c): Following the general procedure using p-toluenesulfonic acid solution (0.3 mL, 2.45 mol/dm3) and 2′-iodoacetophenone (0.210 mL, 1.47 mmol), the product (140 mg, 70% yield) was obtained as a colorless oil after purification by flash chromatography (hexane–EtOAc, 90:10). 1H NMR (400 MHz, CDCl3): δ = 12.26 (br s, 1 H), 7.71 (d, J = 8.4 Hz, 1 H), 7.45 (t, J = 8.4 Hz, 1 H), 6.96 (d, J = 8.0 Hz, 1 H), 6.89 (t, J = 8.0 Hz, 1 H), 2.61 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 204.5, 162.3, 136.4, 130.7, 119.7, 118.9, 118.3, 26.6. HRMS: m/z [M+] calcd for C8H8O2: 137.0600; found: 137.0598. O-Cresol (2d): Following the general procedure using p-toluenesulfonic acid solution (0.3 mL, 2.45 mol/dm3) and 2-methyliodobenzene (0.188 mL, 1.47 mmol), the product (48 mg, 30% yield) was obtained as a colorless oil after purification by flash chromatography (hexane–EtOAc, 85:15). 1H NMR (400 MHz, CDCl3): δ = 7.09–7.17 (m, 2 H), 6.89 (t, J = 7.2 Hz, 1 H), 6.79 (d, J = 7.6 Hz, 1 H), 4.88 (br s, 1 H), 2.28 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 153.7, 131.0, 127.1, 123.8, 120.8, 114.9, 15.7. HRMS: m/z [M+] calcd for C7H8O: 109.0651; found: 109.0655.