Synlett 2016; 27(08): 1211-1216
DOI: 10.1055/s-0035-1561436
cluster
© Georg Thieme Verlag Stuttgart · New York

Catalyst Efficacy of Homogeneous and Heterogeneous Palladium Catalysts in the Direct Arylation of Common Heterocycles

Alan J. Reay
,
Lydia K. Neumann
,
Ian J. S. Fairlamb*
Further Information

Publication History

Received: 18 March 2016

Accepted after revision: 04 April 2016

Publication Date:
18 April 2016 (online)


Abstract

The direct arylation of several common heterocycles, using homogeneous and heterogeneous palladium (pre)catalysts, has been examined by initial rate analysis. The study reveals that apparently distinct palladium catalysts can display similar activities in such transformations, implying formation of a comparable active palladium catalyst phase. A substrate dependence was noted for the palladium catalysts examined.

Supporting Information

 
  • References and Notes

  • 1 Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany. Email: lydia.neumann@catalysis.de
    • 2a Nicolaou KC, Bulger PJ, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 2b Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
    • 3a Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 3b Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 4 Hunt AJ, Farmer TJ, Clark JH In Element Recovery and Sustainability . Vol. 1. Hunt AJ. RSC Publishing; Cambridge: 2013: 1
  • 5 Blaser H.-U, Indolese A, Schnyder A, Steiner H, Studer M. J. Mol. Catal. A: Chem. 2001; 173: 3
    • 6a Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
    • 6b Molnár Á. Chem. Rev. 2011; 111: 2251
    • 6c Balanta A, Godard C, Claver C. Chem. Soc. Rev. 2011; 40: 4973
    • 7a Djakovitch L, Felpin F.-X. ChemCatChem 2014; 6: 2175
    • 7b Cano R, Schmidt AF, McGlacken GP. Chem. Sci. 2015; 6: 5338
  • 8 Tang D.-TD, Collins KD, Ernst JB, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 1809
    • 9a Baumann CG, De Ornellas S, Reeds JP, Storr TE, Williams TJ, Fairlamb IJ. S. Tetrahedron 2014; 70: 6174
    • 9b Reay AJ, Fairlamb IJ. S. Chem. Commun. 2015; 51: 16289
    • 10a Widegren JA, Bennett MA, Finke RG. J. Am. Chem. Soc. 2003; 125: 10301
    • 10b Widegren JA, Finke RG. J. Mol. Catal. A: Chem. 2003; 198: 317
    • 10c Crabtree RH. Chem. Rev. 2012; 112: 1536
    • 10d Crabtree RH. Chem. Rev. 2015; 115: 127
    • 10e Mower MP, Blackmond DG. J. Am. Chem. Soc. 2015; 137: 2386
    • 11a Zalesskiy SS, Ananikov VP. Organometallics 2012; 31: 2302
    • 11b Kapdi AR, Whitwood AC, Williamson DC, Lynam JM, Burns MJ, Williams TJ, Reay AJ, Holmes J, Fairlamb IJ. S. J. Am. Chem. Soc. 2013; 135: 8388
    • 12a Ellis PJ, Fairlamb IJ. S, Hackett SF. J, Wilson K, Lee AF. Angew. Chem. Int. Ed. 2010; 49: 1820
    • 12b Lee AF, Ellis PJ, Fairlamb IJ. S, Wilson K. Dalton Trans. 2010; 39: 10473

    • Other supported PdNPs are available for direct arylation, e.g. Pd@PPy, which are highly active and appear to operate as molecular/colloidal Pd species at higher reactions temperatures (150 °C), see:
    • 12c Zinovyeva VA, Vorotyntsev MA, Bezverkhyy I, Chaumont D, Hierso J.-C. Adv. Funct. Mater. 2011; 21: 1064

    • ; also see ref. 9a High turnover numbers can be achieved in direct arylations using Pd(OAc)2 at higher reaction temperatures, see:
    • 12d Požgan F, Roger J, Doucet H. ChemSusChem 2008; 1: 404
  • 13 General Conditions for Direct Arylation ReactionsTo a microwave vial fitted with magnetic stirrer bar was added [Ph2I]BF4 (309 mg, 0.84 mmol, 1.4 equiv), Pd catalyst (5 mol%), and EtOH (3 mL). To initiate the reaction, substrate (0.6 mmol, 1 equiv) was added, the vial sealed with a septum, and the reaction stirred at the given temperature for 24 h in a pre-heated solid heating block. Under these conditions the isolated product yields were: 2 [32 mg, 51%, using Pd(OAc)2], 4 [18 mg, 31%, using Pd(OAc)2], 6 (45 mg, 69%, using PVP-Pd), and 8 (27 mg, 45%, using PVP-Pd) (nonoptimized).
  • 14 1-Methyl-2-phenylindole (2) 1H NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 8.0 Hz, 1 H), 7.56–7.46 (m, 4 H), 7.45–7.36 (m, 2 H), 7.28–7.23 (m, 1 H), 7.18–7.12 (m, 1 H), 6.57 (s, 1 H), 3.76 (s, 1 H). 13C NMR (101 MHz, CDCl3): δ = 141.7, 138.5, 133.0, 129.5, 128.6, 128.1, 128.0, 121.8, 120.6, 120.0, 109.7, 101.8, 31.3.
  • 15 2-Phenylbenzofuran (4) 1H NMR (400 MHz, CDCl3): δ = 7.92–7.87 (m, 2 H), 7.63–7.59 (m, 1 H), 7.57–7.53 (m, 1 H), 7.50–7.44 (m, 2 H), 7.40–7.35 (m, 1 H), 7.31 (ddd, J = 8.0, 7.0, 1.5 Hz, 1 H), 7.26 (ddd, J = 8.0, 7.0, 1.5 Hz, 1 H), 7.05 (d, J = 1.0 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 156.0, 155.0, 130.6, 129.3, 128.9, 128.7, 125.1, 124.4, 123.1, 121.0, 111.3, 101.4. GC–MS (EI): m/z (ion) = 194 [C14H10O]+; HRMS (EI): m/z calcd for C14H10O: 194.0732; found: 194.0720 [C14H10O]+.
  • 16 4-n-Butyl-2-phenylthiophene (6) 1H NMR (400 MHz, CDCl3): δ = 7.61–7.56 (m, 2 H), 7.42–7.36 (m, 2 H), 7.31–7.25 (m, 1 H), 7.24 (d, J = 1.5 Hz, 1 H), 7.09 (dt, J = 1.5, 1.0 Hz, 1 H), 2.87 (t, J = 7.5 Hz, 2 H), 1.77–1.67 (m, 2 H), 1.50–1.38 (m, 2 H), 0.97 (t, J = 7.5 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 146.8, 141.9, 136.4, 128.8, 127.0, 126.4, 123.5, 117.9, 33.9, 30.0, 22.4, 14.0. ESI-MS: m/z (ion) = 217 [C14H17S]+; ESI-HRMS m/z calcd for C14H17S: 217.1045; found: 217.1024 [C14H17S]+.
  • 17 5-n-Butyl-2-phenylfuran (8) 1H NMR (400 MHz, CDCl3): δ = 7.68–7.63 (m, 2 H), 7.40–7.34 (m, 2 H), 7.23 (tt, J = 7.5, 1.0 Hz, 1 H), 6.56 (d, J = 3.0 Hz, 1 H), 6.08 (dt, J = 3.0, 1.0 Hz, 1 H), 2.70 (app t, J = 7.5 Hz, 2 H), 1.70 (tt, J = 7.5, 6.5 Hz, 2 H), 1.44 (app sext, J = 7.5 Hz, 2 H), 0.97 (t, J = 7.5 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 156.6, 152.2, 131.4, 128.7, 126.8, 123.4, 107.0, 105.8, 30.4, 28.0, 22.4, 14.0. GC–MS (EI): m/z (ion) = 200 [C14H16O]+. HRMS (EI): m/z calcd for C14H16O: 200.1201; found: 200.1202 [C14H16O]+.
  • 18 Bajwa SE, Storr TE, Hatcher LE, Williams TJ, Baumann CG, Whitwood AC, Allan DR, Teat SJ, Raithby PR, Fairlamb IJ. S. Chem. Sci. 2012; 3: 1656
  • 19 Pridgen LN, Jones SS. J. Org. Chem. 1982; 47: 1590
  • 20 Williams TJ, Fairlamb IJ. S. Tetrahedron Lett. 2013; 54: 2906
  • 21 Wakioka M, Nakamura Y, Wang Q, Ozawa F. Organometallics 2012; 31: 4810
  • 22 Fairlamb IJ. S, Lee AF In C–H and C–X Bond Functionalization: Transition Metal Mediation. Ribas X. RSC Publishing; Cambridge: 2013. Chap. 3, 72
  • 23 Kozuch S, Martin JM. L. ACS Catal. 2012; 2: 2787