Synlett 2016; 27(08): 1165-1174
DOI: 10.1055/s-0035-1561357
account
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Hydrofunctionalization of Alkynes

Alison M. Suess
Department of Chemistry, University of Washington, Seattle, Washington 98105, USA   Email: lalic@chem.washington.edu
,
Gojko Lalic*
Department of Chemistry, University of Washington, Seattle, Washington 98105, USA   Email: lalic@chem.washington.edu
› Author Affiliations
Further Information

Publication History

Received: 21 November 2015

Accepted after revision: 06 January 2016

Publication Date:
14 March 2016 (online)


Abstract

We have developed a general approach to the catalytic hydrofunctionalization of alkynes, involving hydrocupration and electrophilic functionalization of the resulting alkenylcopper intermediate. Using this approach with different electrophiles we have developed three transformations: semireduction, hydrobromination, and hydroalkylation of alkynes. In the context of a brief history of copper hydride complexes in organic chemistry, in this account we describe the key developments that inspired and enabled our research. We also describe the reaction development, the scope, and the mechanism of these transformations. In the process, we highlight some of the challenges inherent to our approach and summarize new insights that allowed us to successfully address them.

1 Introduction

2 Semireduction

3 Hydrobromination

4 Hydroalkylation

5 Conclusions

 
  • References

  • 1 Wurtz A. Ann. Chim. Phys. 1844; 11: 250
    • 2a Mahoney WS, Brestensky DM, Stryker JM. J. Am. Chem. Soc. 1988; 110: 291
    • 2b Brestensky DM, Huseland DE, McGettigan C, Stryker JM. Tetrahedron Lett. 1988; 29: 3749
    • 2c Brestensky DM, Stryker JM. Tetrahedron Lett. 1989; 30: 5677
    • 2d Koenig TM, Daeuble JF, Brestensky DM, Stryker JM. Tetrahedron Lett. 1990; 31: 3237
  • 3 Churchill MR, Bezman SA, Osborn JA, Wormald J. J. Am. Chem. Soc. 1971; 93: 2063
  • 4 Mahoney WS, Stryker JM. J. Am. Chem. Soc. 1989; 111: 8818
  • 5 Brunner H, Miehling W. J. Organomet. Chem. 1984; 275: c17
  • 6 Mori A, Fujita A, Nishihara Y, Hiyama T. Chem. Commun. (Cambridge) 1997; 2159
  • 7 Ito H, Ishizuka T, Arimoto K, Miura K, Hosomi A. Tetrahedron Lett. 1997; 38: 8887
  • 8 Lipshutz BH, Keith J, Papa P, Vivian R. Tetrahedron Lett. 1998; 39: 4627
    • 10a Chiu P, Szeto C.-P, Geng Z, Cheng K.-F. Org. Lett. 2001; 3: 1901
    • 10b Yun J, Buchwald SL. Org. Lett. 2001; 3: 1129
    • 10c Lipshutz BH, Papa P. Angew. Chem. Int. Ed. 2002; 114: 4762
    • 10d Chiu P, Leung SK. Chem. Commun. (Cambridge) 2004; 2308
    • 10e Chae J, Yun J, Buchwald SL. Org. Lett. 2004; 6: 4809
    • 10f Lam HW, Joensuu PM. Org. Lett. 2005; 7: 4225
    • 10g Deschamp J, Chuzel O, Hannedouche J, Riant O. Angew. Chem. Int. Ed. 2006; 118: 1314
    • 10h Chuzel O, Deschamp J, Chausteur C, Riant O. Org. Lett. 2006; 8: 5943
    • 10i Welle A, Díez-González S, Tinant B, Nolan SP, Riant O. Org. Lett. 2006; 8: 6059
    • 10j Zhao D, Oisaki K, Kanai M, Shibasaki M. Tetrahedron Lett. 2006; 47: 1403
  • 11 Fujihara T, Xu T, Semba K, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2011; 50: 523
  • 12 Fujihara T, Semba K, Terao J, Tsuji Y. Catal. Sci. Technol. 2014; 4: 1699
  • 13 Mankad NP, Laitar DS, Sadighi JP. Organometallics 2004; 23: 3369
  • 14 Whittaker AM, Lalic G. Org. Lett. 2013; 15: 1112
  • 15 Uehling MR, Rucker RP, Lalic G. J. Am. Chem. Soc. 2014; 136: 8799
    • 16a Uehling MR, Suess AM, Lalic G. J. Am. Chem. Soc. 2015; 137: 1424
    • 16b Suess AM, Uehling MR, Kaminsky W, Lalic G. J. Am. Chem. Soc. 2015; 137: 7747
  • 17 See also: Semba K, Fujihara T, Xu T, Terao J, Tsuji Y. Adv. Synth. Catal. 2012; 354: 1542

    • For selected examples, see:
    • 18a Oblinger E, Montgomery J. J. Am. Chem. Soc. 1997; 119: 9065
    • 18b Wang C.-C, Lin P.-S, Cheng C.-H. J. Am. Chem. Soc. 2002; 124: 9696
    • 18c Takai K, Sakamoto S, Isshiki T. Org. Lett. 2003; 5: 653
    • 18d Miller KM, Huang W.-S, Jamison TF. J. Am. Chem. Soc. 2003; 125: 3442
    • 18e Mahandru GM, Liu G, Montgomery J. J. Am. Chem. Soc. 2004; 126: 3698
    • 18f Ngai M.-Y, Barchuk A, Krische MJ. J. Am. Chem. Soc. 2006; 129: 280
    • 18g Herath A, Thompson BB, Montgomery J. J. Am. Chem. Soc. 2007; 129: 8712
    • 18h Patman RL, Chaulagain MR, Williams VM, Krische MJ. J. Am. Chem. Soc. 2009; 131: 2066
    • 18i Nakao Y, Idei H, Kanyiva KS, Hiyama T. J. Am. Chem. Soc. 2009; 131: 5070
    • 18j Malik HA, Sormunen GJ, Montgomery J. J. Am. Chem. Soc. 2010; 132: 6304
    • 18k Zhou C.-Y, Zhu S.-F, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2010; 132: 10955
    • 18l Leung JC, Patman RL, Sam B, Krische MJ. Chem. Eur. J. 2011; 17: 12437
    • 18m Wei C.-H, Mannathan S, Cheng C.-H. J. Am. Chem. Soc. 2011; 133: 6942
    • 18n McInturff EL, Nguyen KD, Krische MJ. Angew. Chem. Int. Ed. 2014; 53: 3232
    • 18o Nakai K, Yoshida Y, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2014; 136: 7797
    • 19a Molinaro C, Jamison TF. J. Am. Chem. Soc. 2003; 125: 8076
    • 19b Beaver MG, Jamison TF. Org. Lett. 2011; 13: 4140
  • 20 Dang H, Cox N, Lalic G. Angew. Chem. Int. Ed. 2014; 53: 752
  • 21 Dang H, Mailig M, Lalic G. Angew. Chem. Int. Ed. 2014; 53: 6473
    • 22a Wyss CM, Tate BK, Bacsa J, Gray TG, Sadighi JP. Angew. Chem. Int. Ed. 2013; 52: 12920
    • 22b Wyss CM, Tate BK, Bacsa J, Wieliczko M, Sadighi JP. Polyhedron 2014; 84: 87