Synlett 2016; 27(08): 1139-1144
DOI: 10.1055/s-0035-1561351
synpacts
© Georg Thieme Verlag Stuttgart · New York

Radical-Mediated Ring-Opening Functionalization of Cyclobutanols: A Shortcut to γ-Substituted Ketones

Rongguo Ren
a   Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, P. R. of China
,
Chen Zhu*
a   Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, P. R. of China
b   Key Laboratory of Synthesis Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: chzhu@suda.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 16 December 2015

Accepted after revision: 06 January 2016

Publication Date:
04 February 2016 (online)


Dedicated to Professor Guo-Qiang Lin

Abstract

Cyclobutanols serve as privileged precursors for the preparation of γ-substituted ketones. We highlight recent advances in the radical-mediated ring-opening functionalization of cyclobutanols by fluorination, chlorination, bromination, or azidation, which open up a new vista for the synthesis of ketone derivatives.

1 Introduction

2 Silver-Catalyzed Fluorination, Chlorination, and Bromination of Cyclobutanols

3 Manganese-Catalyzed Azidation of Cyclobutanols

4 Conclusion

 
  • References


    • For selected reviews, see:
    • 1a Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
    • 1b Souillart L, Parker E, Cramer N. Top. Curr. Chem. 2014; 346: 163
    • 1c Marek I, Masarwa A, Delaye P.-O, Leibeling M. Angew. Chem. Int. Ed. 2015; 54: 414
    • 2a Griller D, Ingold KU. Acc. Chem. Res. 1980; 13: 317
    • 2b Liu KE, Johnson CC, Newcomb M, Lippard SJ. J. Am. Chem. Soc. 1993; 115: 939

      For selected examples, see:
    • 3a Nishimura T, Ohe K, Uemura S. J. Am. Chem. Soc. 1999; 121: 2645
    • 3b Nishimura T, Uemura S. J. Am. Chem. Soc. 1999; 121: 11010
    • 3c Nishimura T, Matsumura S, Maeda Y, Uemura S. Chem. Commun. 2002; 50
    • 3d Matsumura S, Maeda Y, Nishimura T, Uemura S. J. Am. Chem. Soc. 2003; 125: 8862
    • 3e Ziadi A, Martin R. Org. Lett. 2012; 14: 1266
    • 3f Seiser T, Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
    • 3g Ishida N, Nakanishi Y, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 11875
    • 3h Yu J, Yan H, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 1143
    • 4a Rocek J, Radkowsky AE. J. Am. Chem. Soc. 1968; 90: 2986
    • 4b Meyer K, Rocek J. J. Am. Chem. Soc. 1972; 94: 1209
    • 4c Rocek J, Radkowsky AE. J. Org. Chem. 1973; 38: 89
    • 4d Rocek J, Aylward DE. J. Am. Chem. Soc. 1975; 97: 5452
  • 5 Snider BB, Vo NH, Foxman BM. J. Org. Chem. 1993; 58: 7228
  • 6 Tsunoi S, Ryu I, Tamura Y, Yamasaki S, Sonoda N. Synlett 1994; 1009
  • 7 Kapustina NI, Sokova LL, Makhaev VD, Petrava LA, Nikishin GI. Russ. Chem. Bull. 1999; 48: 2080
  • 8 Casey BM, Eakin CA, Flowers RA. II. Tetrahedron Lett. 2009; 50: 1264

    • For reviews, see:
    • 9a Special issue: Fluorine in the Life Sciences, ChemBioChem 2004; 5: 557
    • 9b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 9c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 9d Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 9e Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
    • 10a Zhao H, Fan X, Yu J, Zhu C. J. Am. Chem. Soc. 2015; 137: 3490

    • For a highlight, see also:
    • 10b Fan X, Zhao H, Zhu C. Acta Chim. Sin. (Engl. Ed.) 2015; 73: 979
  • 11 Contemporaneously, Murakami and co-workers reported a similarly silver-catalyzed fluorination of cyclobutanols, see: Ishida N, Okumura S, Nakanishi Y, Murakami M. Chem. Lett. 2015; 44: 821

    • For examples of the formation of Ag(III) through the interaction of Ag(I) with SelectFluor, see:
    • 12a Yin F, Wang Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 10401
    • 12b Li Z, Song L, Li C. J. Am. Chem. Soc. 2013; 135: 4640
    • 12c Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082
    • 12d Li Z, Wang Z, Zhu L, Tan X, Li C. J. Am. Chem. Soc. 2014; 136: 16439

      For examples, see:
    • 13a Close WJ. J. Am. Chem. Soc. 1957; 79: 1455
    • 13b Noguchi T, Hasegawa M, Tomisawa K, Mitsukuchi M. Bioorg. Med. Chem. 2003; 11: 4729
    • 13c Lukin K, Hsu MC, Chambournier G, Kotecki B, Venkatramani CJ, Leanna MR. Org. Process Res. Dev. 2007; 11: 578
    • 13d Bertolini F, Crotti S, Bussolo VD, Macchia F, Pineschi M. J. Org. Chem. 2008; 73: 8998
    • 13e Yu F, Zhou J.-N, Zhang X.-C, Sui Y.-Z, Wu F.-F, Xie L.-J, Chan AS. C, Wu J. Chem. Eur. J. 2011; 17: 14234
    • 13f Pablo O, Guijarro D, Yus M. J. Org. Chem. 2013; 78: 9181
  • 14 Fan X, Zhao H, Yu J, Bao X, Zhu C. Org. Chem. Front. 2016; 3: 227
  • 15 For a similar example of using AcOH as co-solvent in silver-catalyzed oxidative reaction, see: Zhu L, Chen H, Wang Z, Li C. Org. Chem. Front. 2014; 1: 1299

    • For selected reviews, see:
    • 16a Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 16b Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010
    • 16c Lapointe G, Kapat A, Weidner K, Renaud P. Pure Appl. Chem. 2012; 84: 1633
  • 17 Yu J, Zhao H, Liang S, Bao X, Zhu C. Org. Biomol. Chem. 2015; 13: 7924
  • 18 Ren R, Zhao H, Huan L, Zhu C. Angew. Chem. Int. Ed. 2015; 54: 12692
  • 19 Ringer AL, Magers DH. J. Org. Chem. 2007; 72: 2533

    • For examples of the oxidation of Mn(III) to Mn(V) by hypervalent iodine reagent, see:
    • 20a Liu W, Huang X, Cheng M.-J, Nielsen RJ, Goddard WA. III, Groves JT. Science 2012; 337: 1322
    • 20b Liu W, Groves JT. Angew. Chem. Int. Ed. 2013; 52: 6024
    • 20c Huang X, Liu W, Ren H, Neelamegam R, Hooker JM, Groves JT. J. Am. Chem. Soc. 2014; 136: 6842