Subscribe to RSS
DOI: 10.1055/s-0035-1560987
Recent Progress on the Asymmetric Synthesis of Chiral Flavanones
Publication History
Received: 15 September 2015
Accepted after revision: 13 October 2015
Publication Date:
23 December 2015 (online)
Abstract
Flavanone and its derivatives are privileged natural products that show a wide range of biological activities. The importance of these compounds has driven research developments toward the preparation of flavanones, especially enantioenriched examples. This account reviews recent approaches for the asymmetric synthesis of chiral flavanones. The synthetic methods involve reduction, intramolecular addition, and intermolecular addition.
1 Introduction
2 Asymmetric Reduction
3 C–C Bond Formation
(Intermolecular Conjugate Additions to 4-Chromanones)
4 C–O Bond Formation
4.1 Intramolecular Oxa-Michael Additions
4.2 Tandem Reactions of Chromones
4.3 Intramolecular Mitsunobu Cyclization
5 Conclusion
-
References and Notes
- 1a Chromenes, Chromanones and Chromones . Ellis GP. Wiley; New York: 1977
- 1b Miao H, Yang Z. Org. Lett. 2000; 2: 1765
- 1c Varma RS. J. Heterocycl. Chem. 1999; 36: 1565
- 1d Nicolaou KC, Pfefferkorn JA, Rorgker AJ, Cao G.-Q, Barluenga S, Mitchell HJ. J. Am. Chem. Soc. 2000; 122: 9939
- 2a Saengchantara ST, Wallace TW. Nat. Prod. Rep. 1986; 3: 465
- 2b Flavonoids: Chemistry, Biochemistry and Applications . Andersen ØM, Markham KR. CRC Press; Boca Raton: 2006
- 2c Flavonoids: Biosynthesis, Biological Effects and Dietary Sources. Keller RB. Nova Science Publishers; New York: 2009
- 2d Veitch NC, Grayer RJ. Nat. Prod. Rep. 2011; 28: 1626
- 3a Tanaka K, Sugino T. Green Chem. 2001; 3: 133
- 3b Macquarrie DJ, Nazih R, Sebti S. Green Chem. 2002; 4: 56
- 3c Sarvanamurugan S, Palanichamy M, Arabindoo B, Murugesan V. J. Mol. Catal. A 2004; 218: 101
- 3d Choudary BM, Ranganath KV. S, Yadav J, Kantam ML. Tetrahedron Lett. 2005; 46: 1369
- 4 Nibbs AE, Scheidt KA. Eur. J. Org. Chem. 2012; 449
- 5a Zhang Z.-H, Du H.-F. Angew. Chem. 2015; 127: 633
- 5b Gao M, Meng J.-J, Lv H, Zhang X.-M. Angew. Chem. 2015; 127: 1905
- 5c Bigler R, Huber R, Mezzetti A. Angew. Chem. 2015; 127: 5350
- 5d Menéndez-Pedregal E, Vaquero M, Lastra E, Gamasa P, Pizzano A. Chem. Eur. J. 2015; 21: 549
- 6a Cisak A, Mielczarek C. J. Chem. Soc., Perkin Trans. 2 1992; 1603
- 6b Button RG, Taylor PJ. J. Chem. Soc., Perkin Trans. 2 1992; 1571
- 6c Farmer RL, Biddle MM, Nibbs AE, Huang XK, Bergan RC, Scheidt KA. ACS Med. Chem. Lett. 2010; 1: 400
- 7a Gontcharov AV, Nikitenko AA, Raveendranath P, Shaw C, Wilk BK, Zhou D. WO2007123941 A2, 2007
- 7b Pfaltz A, Valla C, Baeza A, Menges F. Synlett 2008; 3167
-
8 Zhao D.-B, Beiring B, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 8454
- 9 Lemke MK, Schwab P, Fischer P, Tischer S, Witt M, Noehringer L, Rogachev V, Jager A, Kataeva O, Frohlich R, Metz P. Angew. Chem. Int. Ed. 2013; 52: 11651
- 10 Chen J, Chen J.-M, Lang F, Zhang X.-Y, Cun L.-F, Zhu J, Deng J.-G, Liao J. J. Am. Chem. Soc. 2010; 132: 4552
- 11 Han F.-Z, Chen G.-H, Zhang X.-Y, Liao J. Eur. J. Org. Chem. 2011; 2928
- 12 Korenaga T, Hayashi K, Akaki Y, Maenishi R, Sakai T. Org. Lett. 2011; 13: 2022
- 13 Mino T, Hashimoto M, Uehara K, Naruse Y, Kobayashi S, Sakamoto M, Fujita T. Tetrahedron Lett. 2012; 53: 4562
- 14 He Q.-J, So CM, Bian Z.-X, Hayashi T, Wang J. Chem. Asian J. 2015; 10: 540
- 15 Huang S.-H, Wu T.-M, Tsai F.-Y. Appl. Organomet. Chem. 2010; 24: 619
- 16 Holder JC, Marziale AN, Gatti M, Mao B, Stoltz BM. Chem. Eur. J. 2013; 19: 74
- 17 Biddle MM, Lin M, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 3830
- 18 Wang L.-J, Liu X.-H, Dong Z.-H, Fu X, Feng X.-M. Angew. Chem. Int. Ed. 2008; 47: 8670
- 19 Wang H.-F, Cui H.-F, Chai Z, Li P, Zheng C.-W, Yang Y.-Q, Zhao G. Chem. Eur. J. 2009; 15: 13299
- 20a Chen YG, McDaid P, Deng L. Chem. Rev. 2003; 103: 2965
- 20b Tian S.-K, Chen YG, Hang JF, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621
- 20c Li H.-M, Wang Y, Tang L, Deng L. J. Am. Chem. Soc. 2004; 126: 9906
- 20d Li H.-M, Song J, Liu X.-F, Deng L. J. Am. Chem. Soc. 2005; 127: 8948
- 21 Wang H.-F, Xiao H, Wang X.-W, Zhao G. Tetrahedron 2011; 67: 5389
- 22a Sekino E, Kumamoto T, Ikeda T, Tanaka T, Ishikawa T. J. Org. Chem. 2004; 69: 2760
- 22b Ishikawa T, Oku Y, Tanaka T, Kumamoto T. Tetrahedron Lett. 1999; 40: 3777
- 22c Tanaka T, Kumamoto T, Ishikawa T. Tetrahedron: Asymmetry 2000; 11: 4633
- 22d Tanaka T, Kumamoto T, Ishikawa T. Tetrahedron Lett. 2000; 41: 10229
- 23 Dittmer C, Raabe G, Hintermann L. Eur. J. Org. Chem. 2007; 5886
- 24 Hintermann L, Dittmer C. Eur. J. Org. Chem. 2012; 5573
- 25 McDonald BR, Nibbs AE, Scheidt KA. Org. Lett. 2015; 17: 98
- 26 Zhang Y.-L, Wang Y.-Q. Tetrahedron Lett. 2014; 55: 3255
- 27 Du X.-W, Stanley LM. Org. Lett. 2015; 17: 3276
- 28 Wu C, Liu Y.-L, Zeng H, Liu L, Wang D, Chen Y.-J. Org. Biomol. Chem. 2011; 9: 253
- 29 Zhong N.-J, Liu L, Wang D, Chen Y.-J. Chem. Commun. 2013; 49: 3697
- 30 Noda Y, Watanabe M. Helv. Chim. Acta 2002; 85: 3473
For selected examples, see:
For recent examples of enantioselective hydrogenation, see: