Synlett 2016; 27(05): 656-663
DOI: 10.1055/s-0035-1560987
account
© Georg Thieme Verlag Stuttgart · New York

Recent Progress on the Asymmetric Synthesis of Chiral Flavanones

Ling Meng
Department of Chemistry, South University of Science and Technology of China, 1088 Xueyuan Rd., Shenzhen, 518055, P. R. of China   Email: wang.j@sustc.edu.cn
,
Jun Wang*
Department of Chemistry, South University of Science and Technology of China, 1088 Xueyuan Rd., Shenzhen, 518055, P. R. of China   Email: wang.j@sustc.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 15 September 2015

Accepted after revision: 13 October 2015

Publication Date:
23 December 2015 (online)


Abstract

Flavanone and its derivatives are privileged natural products that show a wide range of biological activities. The importance of these compounds has driven research developments toward the preparation of flavanones, especially enantioenriched examples. This account reviews recent approaches for the asymmetric synthesis of chiral flavanones. The synthetic methods involve reduction, intramolecular addition, and intermolecular addition.

1 Introduction

2 Asymmetric Reduction

3 C–C Bond Formation

(Intermolecular Conjugate Additions to 4-Chromanones)

4 C–O Bond Formation

4.1 Intramolecular Oxa-Michael Additions

4.2 Tandem Reactions of Chromones

4.3 Intramolecular Mitsunobu Cyclization

5 Conclusion

 
  • References and Notes

    • 1a Chromenes, Chromanones and Chromones . Ellis GP. Wiley; New York: 1977
    • 1b Miao H, Yang Z. Org. Lett. 2000; 2: 1765
    • 1c Varma RS. J. Heterocycl. Chem. 1999; 36: 1565
    • 1d Nicolaou KC, Pfefferkorn JA, Rorgker AJ, Cao G.-Q, Barluenga S, Mitchell HJ. J. Am. Chem. Soc. 2000; 122: 9939
    • 2a Saengchantara ST, Wallace TW. Nat. Prod. Rep. 1986; 3: 465
    • 2b Flavonoids: Chemistry, Biochemistry and Applications . Andersen ØM, Markham KR. CRC Press; Boca Raton: 2006
    • 2c Flavonoids: Biosynthesis, Biological Effects and Dietary Sources. Keller RB. Nova Science Publishers; New York: 2009
    • 2d Veitch NC, Grayer RJ. Nat. Prod. Rep. 2011; 28: 1626

      For selected examples, see:
    • 3a Tanaka K, Sugino T. Green Chem. 2001; 3: 133
    • 3b Macquarrie DJ, Nazih R, Sebti S. Green Chem. 2002; 4: 56
    • 3c Sarvanamurugan S, Palanichamy M, Arabindoo B, Murugesan V. J. Mol. Catal. A 2004; 218: 101
    • 3d Choudary BM, Ranganath KV. S, Yadav J, Kantam ML. Tetrahedron Lett. 2005; 46: 1369
  • 4 Nibbs AE, Scheidt KA. Eur. J. Org. Chem. 2012; 449

    • For recent examples of enantioselective hydrogenation, see:
    • 5a Zhang Z.-H, Du H.-F. Angew. Chem. 2015; 127: 633
    • 5b Gao M, Meng J.-J, Lv H, Zhang X.-M. Angew. Chem. 2015; 127: 1905
    • 5c Bigler R, Huber R, Mezzetti A. Angew. Chem. 2015; 127: 5350
    • 5d Menéndez-Pedregal E, Vaquero M, Lastra E, Gamasa P, Pizzano A. Chem. Eur. J. 2015; 21: 549
    • 6a Cisak A, Mielczarek C. J. Chem. Soc., Perkin Trans. 2 1992; 1603
    • 6b Button RG, Taylor PJ. J. Chem. Soc., Perkin Trans. 2 1992; 1571
    • 6c Farmer RL, Biddle MM, Nibbs AE, Huang XK, Bergan RC, Scheidt KA. ACS Med. Chem. Lett. 2010; 1: 400
    • 7a Gontcharov AV, Nikitenko AA, Raveendranath P, Shaw C, Wilk BK, Zhou D. WO2007123941 A2, 2007
    • 7b Pfaltz A, Valla C, Baeza A, Menges F. Synlett 2008; 3167
  • 8 Zhao D.-B, Beiring B, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 8454
  • 9 Lemke MK, Schwab P, Fischer P, Tischer S, Witt M, Noehringer L, Rogachev V, Jager A, Kataeva O, Frohlich R, Metz P. Angew. Chem. Int. Ed. 2013; 52: 11651
  • 10 Chen J, Chen J.-M, Lang F, Zhang X.-Y, Cun L.-F, Zhu J, Deng J.-G, Liao J. J. Am. Chem. Soc. 2010; 132: 4552
  • 11 Han F.-Z, Chen G.-H, Zhang X.-Y, Liao J. Eur. J. Org. Chem. 2011; 2928
  • 12 Korenaga T, Hayashi K, Akaki Y, Maenishi R, Sakai T. Org. Lett. 2011; 13: 2022
  • 13 Mino T, Hashimoto M, Uehara K, Naruse Y, Kobayashi S, Sakamoto M, Fujita T. Tetrahedron Lett. 2012; 53: 4562
  • 14 He Q.-J, So CM, Bian Z.-X, Hayashi T, Wang J. Chem. Asian J. 2015; 10: 540
  • 15 Huang S.-H, Wu T.-M, Tsai F.-Y. Appl. Organomet. Chem. 2010; 24: 619
  • 16 Holder JC, Marziale AN, Gatti M, Mao B, Stoltz BM. Chem. Eur. J. 2013; 19: 74
  • 17 Biddle MM, Lin M, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 3830
  • 18 Wang L.-J, Liu X.-H, Dong Z.-H, Fu X, Feng X.-M. Angew. Chem. Int. Ed. 2008; 47: 8670
  • 19 Wang H.-F, Cui H.-F, Chai Z, Li P, Zheng C.-W, Yang Y.-Q, Zhao G. Chem. Eur. J. 2009; 15: 13299
    • 20a Chen YG, McDaid P, Deng L. Chem. Rev. 2003; 103: 2965
    • 20b Tian S.-K, Chen YG, Hang JF, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621
    • 20c Li H.-M, Wang Y, Tang L, Deng L. J. Am. Chem. Soc. 2004; 126: 9906
    • 20d Li H.-M, Song J, Liu X.-F, Deng L. J. Am. Chem. Soc. 2005; 127: 8948
  • 21 Wang H.-F, Xiao H, Wang X.-W, Zhao G. Tetrahedron 2011; 67: 5389
    • 22a Sekino E, Kumamoto T, Ikeda T, Tanaka T, Ishikawa T. J. Org. Chem. 2004; 69: 2760
    • 22b Ishikawa T, Oku Y, Tanaka T, Kumamoto T. Tetrahedron Lett. 1999; 40: 3777
    • 22c Tanaka T, Kumamoto T, Ishikawa T. Tetrahedron: Asymmetry 2000; 11: 4633
    • 22d Tanaka T, Kumamoto T, Ishikawa T. Tetrahedron Lett. 2000; 41: 10229
  • 23 Dittmer C, Raabe G, Hintermann L. Eur. J. Org. Chem. 2007; 5886
  • 24 Hintermann L, Dittmer C. Eur. J. Org. Chem. 2012; 5573
  • 25 McDonald BR, Nibbs AE, Scheidt KA. Org. Lett. 2015; 17: 98
  • 26 Zhang Y.-L, Wang Y.-Q. Tetrahedron Lett. 2014; 55: 3255
  • 27 Du X.-W, Stanley LM. Org. Lett. 2015; 17: 3276
  • 28 Wu C, Liu Y.-L, Zeng H, Liu L, Wang D, Chen Y.-J. Org. Biomol. Chem. 2011; 9: 253
  • 29 Zhong N.-J, Liu L, Wang D, Chen Y.-J. Chem. Commun. 2013; 49: 3697
  • 30 Noda Y, Watanabe M. Helv. Chim. Acta 2002; 85: 3473