Synlett 2015; 26(18): 2583-2587
DOI: 10.1055/s-0035-1560479
letter
© Georg Thieme Verlag Stuttgart · New York

A Concise Formal Total Synthesis of (±)-Centrolobine via DDQ-Mediated Diastereoselective Allylation and Ring-Closing Metathesis

Hyoungsu Kim
College of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 443-749, Korea   Email: dongjoo@ajou.ac.kr
,
Dongjoo Lee*
College of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 443-749, Korea   Email: dongjoo@ajou.ac.kr
› Author Affiliations
Further Information

Publication History

Received: 17 July 2015

Accepted after revision: 18 September 2015

Publication Date:
18 September 2015 (online)


Abstract

An expedient approach to the construction of arylated 2,6-cis-disubstituted dihydropyran framework was developed involving subsequent DDQ-mediated diastereoselective allylation at an oxygen-substituted benzylic position and ring-closing metathesis (RCM) as key transformations. The synthetic utility of the methodology was illustrated by a formal total synthesis of (±)-centrolobine in five steps from the known homoallylic alcohol or in eight steps from the readily available THP-protected glycidol. This route allows for direct access towards other diarylheptanoid natural products and their synthetic analogues with a variety of side chains.

Supporting Information

 
  • References and Notes

    • 1a Larrosa I, Romea P, Urpí F. Tetrahedron 2008; 64: 2683
    • 1b Clarke S, Santos S. Eur. J. Org. Chem. 2006; 2045
    • 1c Nakata T. Chem. Rev. 2005; 105: 4314
    • 1d Zeni G, Larock RC. Chem. Rev. 2004; 104: 2285
    • 2a Akiyama K, Aoki H, Kikuzaki T, Okuda A, Lajis NH, Nakatani N. J. Nat. Prod. 2006; 69: 1637
    • 2b Matsuda H, Ando S, Kato T, Morikawa T, Yoshikawa M. Bioorg. Med. Chem. 2006; 14: 138
    • 2c Kim H.-J, Yeom S.-H, Kim MK, Shim J.-G, Paek I.-N, Lee M.-W. Arch. Pharm. Res. 2005; 28: 177
    • 2d Mohamad H, Lajis NH, Abas F, Ali AM, Sukari MA, Kikuzaki H, Nakatani N. J. Nat. Prod. 2005; 68: 285
    • 2e Yadav PN, Liu Z, Rafi MM. J. J. Pharmacol. Exp. Ther. 2003; 305: 925
    • 2f Ishida J, Kozuka M, Tokuda H, Nishino H, Nagumo S, Lee K.-H, Nagai M. Bioorg. Med. Chem. 2002; 10: 3361
    • 2g Chun K.-S, Park K.-K, Lee J, Kang M, Surh Y.-J. Oncol. Res. 2002; 13: 37
    • 2h Matsuda H, Morikawa T, Tao J, Ueda K, Yoshikawa M. Chem. Pharm. Bull. 2002; 50: 208
    • 2i Ali MS, Tezuka Y, Awale S, Banskota AH, Kadota S. J. Nat. Prod. 2001; 64: 289
    • 2j Lee M.-W, Kim J.-H, Jeong D.-W, Ahn K.-H, Toh S.-H, Surh Y.-J. Biol. Pharm. Bull. 2000; 23: 517
    • 3a De Albuquerque IL, Galeffi C, Casinovi CG, Marini-Bettolo GB. Gazz. Chim. Ital. 1964; 287
    • 3b Galeffi C, Casinovi CG, Marini-Bettolo GB. Gazz. Chim. Ital. 1965; 95
    • 3c Arango Craveiro A, da Costa Prado A, Gottlieb OR, Welerson de Albuquerque PC. Phytochemistry 1970; 9: 1869
    • 3d Jurd L, Wong RY. Aust. J. Chem. 1984; 37: 1127
    • 3e de Carvalho Alcantara AF, Souza MR, Piló-Veloso D. Fitoterapia 2000; 71: 613
  • 4 Woo KW, Moon E, Kwon OW, Lee SO, Kim SY, Choi SZ, Son MW, Lee KR. Bioorg. Med. Chem. Lett. 2013; 23: 3806
  • 5 Jiang Z.-H, Tanaka T, Hirata H, Fukuoka R, Kuono I. Phytochemistry 1996; 43: 1049
  • 6 Tao QF, Xu Y, Lam RY. Y, Schneider B, Dou H, Leung PS, Shi SY, Zhou CX, Yang LX, Zhang RP, Xiao YC, Wu X, Stockigt J, Zeng S, Cheng CH. K, Zhao Y. J. Nat. Prod. 2008; 71: 12

    • For reported syntheses of centrolobine, see:
    • 7a Colobert F, Mazery RD, Solladié G, Carreño MC. Org. Lett. 2002; 4: 1723
    • 7b Marumoto S, Jaber JJ, Vitale JP, Rychnovsky SD. Org. Lett. 2002; 4: 3919
    • 7c Carreño MC, Mazery RD, Urbano A, Colobert F, Solladie G. J. Org. Chem. 2003; 68: 7779
    • 7d Evans PA, Cui J, Gharpure SJ. Org. Lett. 2003; 5: 3883
    • 7e Lee E, Kim HJ, Jang WS. Bull. Korean Chem. Soc. 2004; 25: 1609
    • 7f Boulard L, BouzBouz S, Cossy J, Franck X, Figadère B. Tetrahedron Lett. 2004; 45: 6603
    • 7g Clarke PA, Martin WH. C. Tetrahedron Lett. 2004; 45: 9061
    • 7h Chan K.-P, Loh T.-P. Org. Lett. 2005; 7: 4491
    • 7i Clarke PA, Martin WH. C. Tetrahedron 2005; 61: 5433
    • 7j Jennings MP, Clemens RT. Tetrahedron Lett. 2005; 46: 2021
    • 7k Chandrasekhar S, Prakash SJ, Shyamsunder T. Tetrahedron Lett. 2005; 46: 6651
    • 7l Sabitha G, Reddy KB, Reddy GS. K. K, Fatima N, Yadav JS. Synlett 2005; 2347
    • 7m Böhrsch V, Blechert S. Chem. Commun. 2006; 1968
    • 7n Lee C.-HA, Loh T.-P. Tetrahedron Lett. 2006; 47: 1641
    • 7o Prasad KR, Anbarasan P. Tetrahedron 2007; 63: 1089
    • 7p Washio T, Yamaguchi R, Abe T, Nambu H, Anada M, Hashimoto S. Tetrahedron 2007; 63: 12037
    • 7q Dziedzic M, Furman B. Tetrahedron Lett. 2008; 49: 678
    • 7r Takeuchi T, Matsuhashi M, Nakata T. Tetrahedron Lett. 2008; 49: 6462
    • 7s Zhou H, Loh T.-P. Tetrahedron Lett. 2009; 50: 4368
    • 7t He A, Sutivisedsak N, Spilling CD. Org. Lett. 2009; 11: 3124
    • 7u Schmidt B, Hölter F. Chem. Eur. J. 2009; 15: 11948
    • 7v Mohapatra DK, Pal R, Rahaman H, Gurjar MK. Heterocycles 2010; 80: 219
    • 7w Chaładaj W, Kowalczyk R, Jurczak J. J. Org. Chem. 2010; 75: 1740
    • 7x Rogano F, Rüedi P. Helv. Chim. Acta 2010; 93: 1281
    • 7y Fuwa H, Noto K, Sasaki M. Heterocycles 2010; 82: 641
    • 7z Reddy CR, Madhavi PP, Chandrasekhar S. Tetrahedron: Asymmetry 2010; 21: 103
    • 7aa Jeong Y, Kim D.-Y, Choi Y, Ryu J.-S. Org. Biomol. Chem. 2011; 9: 374
    • 7ab Fujioka H, Yahata K, Kubo O, Sawama Y, Hamada T, Maegawa T. Angew. Chem. Int. Ed. 2011; 50: 12232
    • 7ac Reddy CR, Madhavi PP, Chandrasekhar S. Synthesis 2011; 123
    • 7ad Iqbal M, Mistry N, Clarke PA. Tetrahedron 2011; 67: 4960
    • 7ae Xie J.-H, Guo L.-C, Yang X.-H, Wang L.-X, Zhou Q.-L. Org. Lett. 2012; 14: 4758
    • 7af Kumaraswamy G, Rambabu D. Tetrahedron: Asymmetry 2013; 24: 196
    • 7ag Sudarshan K, Aidhen IS. Eur. J. Org. Chem. 2013; 2298
    • 7ah Zeng J, Tan YJ, Ma J, Leow ML, Tirtorahardjo D, Liu X.-W. Chem. Eur. J. 2014; 20: 405
    • 7ai Yang Z, Kim H.-D. Tetrahedron: Asymmetry 2014; 25: 305
    • 7aj Latif M, Yun JI, Seshadri K, Kim HR, Park CH, Park H, Kim H, Lee J. J. Org. Chem. 2015; 80: 3315
    • 8a Becker H, Turner AB In The Chemistry of Quinoid Compounds . Vol. 2. Patai S, Rappoport Z. Wiley; New York: 1988: 1351
    • 8b Turner AB In Synthetic Agents . Vol. 4. Pizey JS. Halstead-Wiley; New York: 1977: 193
    • 8c Becker H In The Chemistry of Quinoid Compounds . Patai S. Wiley; New York: 1974: 335
    • 9a Xu Y.-C, Roy C, Lebeau E. Tetrahedron Lett. 1993; 34: 8189
    • 9b Xu Y.-C, Kohlman DT, Liang SX, Erikkson C. Org. Lett. 1999; 1: 1599
    • 9c Xu Y.-C In Recent Research Developments in Organic Chemistry . Vol. 4. Transworld Research Network; India: 2000: 423-441
    • 9d Ying B.-P, Trogden B.-G, Kohlman DT, Liang SX, Xu Y.-C. Org. Lett. 2004; 6: 1523
    • 10a Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
    • 10b Tu W, Liu L, Floreancig PE. Angew. Chem. Int. Ed. 2008; 47: 4184
    • 10c Han X, Floreancig PE. Org. Lett. 2012; 14: 3808
    • 10d Muramatsu W, Nakano K. Org. Lett. 2014; 16: 2042
    • 11a Alcarez L, Hamett JJ, Mioskowski C, Martel JP, Le Gall T, Shin D.-S, Falck JR. Tetrahedron Lett. 1994; 35: 5449
    • 11b Baylon C, Heck M.-P, Mioskowski C. J. Org. Chem. 1999; 64: 3354
    • 12a Matsumoto K, Fuwa S, Shimojo M, Kitajima H. Bull. Chem. Soc. Jpn. 1996; 69: 2977
    • 12b Kotke M, Schreiner PR. Synthesis 2007; 779
    • 12c Kamal A, Naseer AK, Srikanth YV. V, Reddy KS. Can. J. Chem. 2008; 86: 1099
    • 13a Trost BM, McEachern EJ, Toste FD. J. Am. Chem. Soc. 1998; 120: 12702
    • 13b Sumskaya YG, Whitney PS. III, Bergmeier SC, McMills MC, Priestley ND, Wright DL. ARKIVOC 2011; (v): 144
    • 14a Ruder SM, Ronald RC. Tetrahedron Lett. 1987; 28: 135
    • 14b Oikawa Y, Yochika T, Yonemitsu O. Tetrahedron Lett. 1982; 23: 885
    • 14c Horita K, Yochika T, Tanaka T, Oikawa Y, Yonemitsu O. Tetrahedron 1986; 42: 3021
  • 15 Becker H.-D. J. Org. Chem. 1965; 30: 982
  • 16 The relative stereochemical relationships of 7ac (α,α′-syn vs. α, α′-anti) were firmly determined by their conversion into the known arylated 2,6-cis-disubstituted tetrahydropyranyl alcohol (±)-5 reported by Aidhen and co-workers.7ag

    • For reviews on this subject, see:
    • 17a Hoffmann RW. Chem. Rev. 1989; 89: 1841
    • 17b Hoffmann RW. Angew. Chem., Int. Ed. 1992; 31: 1124
  • 18 Oikawa Y, Tanaka T, Hamada T, Yonemitsu O. Chem. Pharm. Bull. 1987; 35: 2196
    • 19a Fu GC, Grubbs RH. J. Am. Chem. Soc. 1992; 114: 5426
    • 19b Crimmins MT, Choy AL. J. Org. Chem. 1997; 62: 7548
  • 20 Alternatively, diimide reduction (TsNHNH2, NaHCO3, PhMe, reflux, 12 h) was also explored for the reduction of olefin group in (±)-15, but showed no improvement [<10% yield from (±)-15].
  • 21 Experimental Procedure and Analytical Data for Alcohol (±)-5 To a solution of (±)-15 (31.8 mg, 0.14 mmol) in EtOH (1.4 mL) were added 10% Pd/C (6.4 mg) at r.t. The reaction mixture was stirred under H2 atmosphere for 3 h, then filtered through a pad of Celite 545 and concentrated in vacuo. Purification of the residue by flash chromatography on silica gel, using hexanes–EtOAc (10:1 to 4:1) as eluant, provided (±)-5 (20.7 mg, 64.5%) as a clear oil. 1H NMR (400 MHz, CDCl3): δ = 7.27 (d, J = 8.8 Hz, 2 H), 6.87 (d, J = 8.8 Hz, 2 H), 4.35 (dd, J = 11.2, 2.0 Hz, 1 H), 3.80 (s, 3 H), 3.55–3.69 (m, 3 H), 2.13–2.16 (m, 1 H), 1.94–2.00 (m, 1 H), 1.79–1.83 (m, 1 H), 1.63–1.75 (m, 1 H), 1.52–1.60 (m, 2 H), 1.32–1.43 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 158.9, 135.2, 127.3, 113.7, 79.6, 78.8, 66.5, 55.5, 33.7, 27.1, 23.8. IR (neat): 3441, 2935, 2857, 1613, 1515 cm–1. HRMS (EI+): m/z calcd for C13H18O3: 222.1256; found: 222.1255 [M + H]+.