Synlett 2015; 26(20): 2745-2750
DOI: 10.1055/s-0035-1560178
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Progress in the Synthesis of 5-Unsubstituted Pyrrolidines via [3+2] Cycloadditions

Jundong Li
Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. of China   Email: ydzhang@xmu.edu.cn
,
Huaibo Zhao
Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. of China   Email: ydzhang@xmu.edu.cn
,
Yandong Zhang*
Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. of China   Email: ydzhang@xmu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 06 July 2015

Accepted after revision: 02 August 2015

Publication Date:
02 September 2015 (online)


Dedicated to Professor Pei-Qiang Huang

Abstract

The 1,3-dipolar cycloaddition of azomethine ylides with alkenes is one of the most powerful methods for the synthesis of multisubstituted pyrrolidines. 5-Unsubstituted pyrrolidines are important structural motifs of numerous biologically active natural products and drugs. Herein, recent progress in the synthesis of 5-unsubstituted pyrrolidines through intermolecular [3+2] cycloaddition is highlighted.

1 Introduction

2 Recent Development with α-Silylimines as Azomethine Ylide Precursors

3 Two-Step Protocol with α-Iminonitriles as Azomethine Ylide Precursors

4 Applications to Total Synthesis

5 Summary

 
  • References

    • 1a Buckingham J, Baggaley KH, Roberts AD, Szabό LF. Dictionary of Alkaloids . CRC Press; Boca Raton: 2010. 2nd ed
    • 1b Fattorusso E, Taglialatela-Scafati O In Modern Alkaloids: Structure, Isolation, Synthesis and Biology . Wiley-VCH; Weinheim: 2008
    • 2a Poupon E, Salame R, Yan L.-H In Biomimetic Organic Synthesis . Wiley-VCH; Weinheim: 2011: 1
    • 2b Dewick PM In Medicinal Natural Products . John Wiley and Sons; Chichester: 2009. 3rd ed., 311

      For reviews, see:
    • 3a Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2013; 114: 2390
    • 3b Pihko P, Majander I, Erkkilä A In Asymmetric Organocatalysis . Vol. 291. List B. Springer; Berlin/Heidelberg: 2009: 145
    • 3c Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178

      For reviews, see:
    • 4a Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
    • 4b Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
    • 4c Narayan R, Potowski M, Jia ZJ, Antonchick A, Wadmann PH. Acc. Chem. Res. 2014; 47: 1296
    • 4d Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
  • 5 For a review, see: Najera C, Sansano JM. Curr. Org. Chem. 2003; 7: 1105
    • 6a Pearson WH, Szura DP, Harter WG. Tetrahedron Lett. 1988; 29: 761
    • 6b Achiwa K, Sekiya M. Tetrahedron Lett. 1982; 23: 2589

      For selected examples, see:
    • 7a Movassaghi M, Schmidt MA. Angew. Chem. Int. Ed. 2007; 46: 3725
    • 7b Li C, Chan C, Heimann AC, Danishefsky SJ. Angew. Chem. Int. Ed. 2007; 46: 1444
    • 7c Crich D, Pavlovic AB, Samy R. Tetrahedron 1995; 51: 6379
  • 8 Hernández-Toribio J, Padilla S, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2012; 51: 8854
  • 9 Pascual-Escudero A, González-Esguevillas M, Padilla S, Adrio J, Carretero JC. Org. Lett. 2014; 16: 2228
  • 10 Li J, Zhao H, Jiang X, Wang X, Hu H, Yu L, Zhang Y. Angew. Chem. Int. Ed. 2015; 54: 6306

    • For recent developments, see:
    • 11a Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
    • 11b Luo J, Preciado S, Larrosa I. J. Am. Chem. Soc. 2014; 136: 4109
    • 11c Neely JM, Rovis T. J. Am. Chem. Soc. 2014; 136: 2735
    • 12a Hu L, Ramstrom O. Chem. Commun. 2014; 50: 3792
    • 12b Robles-Machín R, Alonso I, Adrio J, Carretero JC. Chem. Eur. J. 2010; 16: 5286
    • 12c Ueno K, Kanemasa S, Tsuge O. Bull. Chem. Soc. Jpn. 1989; 62: 808
    • 12d Tsuge O, Kanemasa S, Yorozu K, Ueno K. Bull. Chem. Soc. Jpn. 1987; 60: 3359
    • 12e Tsuge O, Ueno K, Kanemasa S, Yorozu K. Bull. Chem. Soc. Jpn. 1986; 59: 1809
    • 12f Tsuge O, Kanemasa S, Yorozu K, Ueno K. Chem. Lett. 1985; 1601

      For a review, see:
    • 13a Mattalia JM, Marchi-Delapierre C, Hazimeh H, Chanon M. ARKIVOC 2006; (iv): 90

    • For selected examples, see:
    • 13b Kison C, Opatz T. Eur. J. Org. Chem. 2008; 2740
    • 13c Shahane S, Louafi F, Moreau J, Hurvois J.-P, Renaud J.-L, van de Weghe P, Roisnel T. Eur. J. Org. Chem. 2008; 4622
    • 13d Sassaman MB. Tetrahedron 1996; 52: 10835
    • 13e Ogura K, Shimamura Y, Fujita M. J. Org. Chem. 1991; 56: 2920

      For pioneering works, see:
    • 14a Brown HC, Yoon NM. J. Am. Chem. Soc. 1968; 90: 2686
    • 14b Rathke MW, Brown HC. J. Am. Chem. Soc. 1966; 88: 2606
  • 15 Couturier M, Tucker JL, Andresen BM, Dubé P, Negri JT. Org. Lett. 2001; 3: 465

    • For anionic chain reactions, see:
    • 16a Shono T, Kise N, Masuda M, Suzumoto T. J. Org. Chem. 1985; 50: 2527
    • 16b Shono T, Ohmizu H, Kawakami S, Nakano S, Kise N. Tetrahedron Lett. 1981; 22: 871

    • For anionic chain reaction in polymerization, see:
    • 16c Odian G In Principles of Polymerization . John Wiley and Sons; Hoboken: 2004. 372