Synlett 2015; 26(18): 2479-2484
DOI: 10.1055/s-0035-1560171
synpacts
© Georg Thieme Verlag Stuttgart · New York

Functional Group Tolerant Markovnikov-Selective Hydrofunctionalization of Unactivated Olefins Using a Cobalt Complex as Catalyst

Hiroki Shigehisa*
Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo-shi, Tokyo 202-8585, Japan   Email: cgehisa@musashino-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 11 June 2015

Accepted: 21 July 2015

Publication Date:
25 August 2015 (online)


Abstract

Recent developments in the Markovnikov-selective hydrofunctionalization of unactivated olefins are presented. Our group found that the use of a cobalt complex, an N-fluoropyridinium salt, and a siloxane facilitates hydrofunctionalization with excellent functional group tolerance. Mechanistically, this catalysis involves both a carbon radical and a carbocationic intermediate.

 
  • References and Notes

  • 1 Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
    • 2a Chauvin Y. Angew. Chem. Int. Ed. 2006; 45: 3740
    • 2b Grubbs RH. Angew. Chem. Int. Ed. 2006; 45: 3760
    • 2c Schrock RR. Angew. Chem. Int. Ed. 2006; 45: 3748
  • 3 Denmark SE, Butler CR. Chem. Commun. 2009; 20
  • 4 Isayama S, Mukaiyama T. Chem. Lett. 1989; 18: 1071
  • 5 Tokuyasu T, Kunikawa S, Masuyama A, Nojima M. Org. Lett. 2002; 4: 3595
    • 6a Shigehisa H, Suwa Y, Furiya N, Nakaya Y, Fukushima M, Ichihashi Y, Hiroya K. Angew. Chem. Int. Ed. 2013; 52: 3646
    • 6b Shi J, Manolikakes G, Yeh C.-H, Guerrero CA, Shenvi RA, Shigehisa H, Baran PS. J. Am. Chem. Soc. 2011; 133: 8014
    • 6c Kuramochi A, Usuda H, Yamatsugu K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2005; 127: 14200
    • 6d Nagatomo M, Koshimizu M, Masuda K, Tabüchi T, Urabe D, Inoue M. J. Am. Chem. Soc. 2014; 136: 5916
    • 6e Cherney EC, Lopchuk JM, Green JC, Baran PS. J. Am. Chem. Soc. 2014; 136: 12592
    • 6f Renata H, Zhou Q, Dünstl G, Felding J, Merchant RR, Yeh C.-H, Baran PS. J. Am. Chem. Soc. 2015; 137: 1330
    • 7a Waser J, Carreira EM. J. Am. Chem. Soc. 2004; 126: 5676
    • 7b Waser J, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 4099
    • 7c Waser J, Gaspar B, Nambu H, Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693
    • 7d Waser J, Gonzalez-Gomez JC, Nambu H, Huber P, Carreira EM. Org. Lett. 2005; 7: 4249
  • 9 Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
  • 10 Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 5758
  • 11 Gaspar B, Carreira EM. J. Am. Chem. Soc. 2009; 131: 13214
    • 12a Crossley SW. M, Barabé F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
    • 12b Iwasaki K, Wan KK, Oppedisano A, Crossley SW, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 1300
  • 13 King SM, Ma X, Herzon SB. J. Am. Chem. Soc. 2014; 136: 6884
    • 14a Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
    • 14b Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. J. Am. Chem. Soc. 2009; 131: 4904
  • 15 Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature 2014; 516: 343
  • 16 Nicewicz D, Hamilton D, Nicewicz D, Hamilton D. Synlett 2014; 25: 1191
  • 17 Shigehisa H, Aoki T, Yamaguchi S, Shimizu N, Hiroya K. J. Am. Chem. Soc. 2013; 135: 10306
  • 18 Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 19a Leung JC. T, Chatalova-Sazepin C, West JG, Rueda-Becerril M, Paquin J.-F, Sammis GM. Angew. Chem. Int. Ed. 2012; 51: 10804
    • 19b Rueda-Becerril M, Chatalova Sazepin C, Leung JC. T, Okbinoglu T, Kennepohl P, Paquin J.-F, Sammis GM. J. Am. Chem. Soc. 2012; 134: 4026
  • 20 Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
  • 21 Shigehisa H, Nishi E, Fujisawa M, Hiroya K. Org. Lett. 2013; 15: 5158
  • 22 O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 23a Hannedouche J, Schulz E. Chem. Eur. J. 2013; 19: 4972
    • 23b Hesp KD, Stradiotto M. ChemCatChem 2010; 2: 1192
    • 23c Muller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
  • 24 Shigehisa H, Koseki N, Shimizu N, Fujisawa M, Niitsu M, Hiroya K. J. Am. Chem. Soc. 2014; 136: 13534