Semin Liver Dis 2015; 35(02): 097-106
DOI: 10.1055/s-0035-1550061
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Origin and Function of Myofibroblasts in the Liver

Rebecca G. Wells
1   Departments of Medicine (GI) and Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
,
Robert F. Schwabe
2   Department of Medicine, Columbia University, New York, New York
3   Institute of Human Nutrition, Columbia University, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
14 May 2015 (online)

Abstract

Liver fibrosis contributes to many of the devastating complications of viral, toxic, fatty, and cholestatic liver disease. Understanding the cell populations that promote liver fibrosis and the molecular pathways through which they operate is essential for the development of antifibrotic therapies. The authors review the origins and functions of hepatic myofibroblasts, focusing on hepatic stellate cells, the main contributors to organ fibrosis, and portal fibroblasts, an insufficiently characterized population that may have a specialized function in promoting periductular fibrosis, but a limited role in overall organ fibrosis. They discuss the hypothesis that each fibrogenic cell population in the liver exerts specific functions, and whether cell type-specific antifibrotic strategies are required or whether one therapeutic strategy fits all.

 
  • References

  • 1 Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3 (5) 349-363
  • 2 Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol 2007; 170 (6) 1807-1816
  • 3 Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139 (5) 871-890
  • 4 Scholten D, Osterreicher CH, Scholten A , et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 2010; 139 (3) 987-998
  • 5 Taura K, Miura K, Iwaisako K , et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 2010; 51 (3) 1027-1036
  • 6 Chu AS, Diaz R, Hui JJ , et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 2011; 53 (5) 1685-1695
  • 7 Mederacke I, Hsu CC, Troeger JS , et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 8 Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012; 18 (7) 1028-1040
  • 9 Kupffer K. Uber Sternzellen der Leber. Briefliche Mitteilung an Professor Waldeyer. Arch Mikr Anat 1876; 12: 353-358
  • 10 Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 2001; 21 (3) 311-335
  • 11 Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88 (1) 125-172
  • 12 Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 1985; 82 (24) 8681-8685
  • 13 Wake K. “Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 1971; 132 (4) 429-462
  • 14 Knook DL, Seffelaar AM, de Leeuw AM. Fat-storing cells of the rat liver. Their isolation and purification. Exp Cell Res 1982; 139 (2) 468-471
  • 15 Geerts A, Niki T, Hellemans K , et al. Purification of rat hepatic stellate cells by side scatter-activated cell sorting. Hepatology 1998; 27 (2) 590-598
  • 16 Mederacke I, Dapito DH, Affo S, Uchinami H, Schwabe RF. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc 2015; 10 (2) 305-315
  • 17 Kluwe J, Wongsiriroj N, Troeger JS , et al. Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut 2011; 60 (9) 1260-1268
  • 18 Henderson NC, Arnold TD, Katamura Y , et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013; 19 (12) 1617-1624
  • 19 Yin C, Evason KJ, Maher JJ, Stainier DY. The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology 2012; 56 (5) 1958-1970
  • 20 Oesterreicher CH, Lemberger UJ, Mahon R, Rülicke T, Trauner M, Casanova E. Hepatic stellate cells are the major source of collagen in murine models of liver fibrosis. J Hepatol 2014; 60: S61
  • 21 Iwaisako K, Jiang C, Zhang M , et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 2014; 111 (32) E3297-E3305
  • 22 Troeger JS, Mederacke I, Gwak GY , et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 2012; 143 (4) 1073-83.e22
  • 23 Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 2015; 61 (3) 1066-1079
  • 24 Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147 (4) 765-783.e4
  • 25 Wells RG. Tissue mechanics and fibrosis. Biochim Biophys Acta 2013; 1832 (7) 884-890
  • 26 Perepelyuk M, Terajima M, Wang AY , et al. Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury. Am J Physiol Gastrointest Liver Physiol 2013; 304 (6) G605-G614
  • 27 Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 2003; 83 (5) 655-663
  • 28 Zhan SS, Jiang JX, Wu J , et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 2006; 43 (3) 435-443
  • 29 Iredale JP, Benyon RC, Pickering J , et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102 (3) 538-549
  • 30 Elsharkawy AM, Mann DA. Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology 2007; 46 (2) 590-597
  • 31 Luedde T, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8 (2) 108-118
  • 32 Pradere JP, Kluwe J, De Minicis S , et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 2013; 58 (4) 1461-1473
  • 33 Kisseleva T, Cong M, Paik Y , et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 2012; 109 (24) 9448-9453
  • 34 McHedlidze T, Waldner M, Zopf S , et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 2013; 39 (2) 357-371
  • 35 Dranoff JA, Wells RG. Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology 2010; 51 (4) 1438-1444
  • 36 Carruthers JS, Kalifat SR, Steiner JW. The ductular cell reaction of rat liver in extrahepatic cholestasis. II. The proliferation of connective tissue. Exp Mol Pathol 1962; 1: 377-396
  • 37 Li Z, Dranoff JA, Chan EP, Uemura M, Sévigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 2007; 46 (4) 1246-1256
  • 38 Kinnman N, Francoz C, Barbu V , et al. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab Invest 2003; 83 (2) 163-173
  • 39 Lemoinne S, Cadoret A, Rautou PE , et al. Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology 2015; 61 (3) 1041-1055
  • 40 Kruglov EA, Jain D, Dranoff JA. Isolation of primary rat liver fibroblasts. J Investig Med 2002; 50 (3) 179-184
  • 41 Knittel T, Kobold D, Saile B , et al. Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 1999; 117 (5) 1205-1221
  • 42 Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci U S A 1996; 93 (1) 136-140
  • 43 Olsen AL, Bloomer SA, Chan EP , et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastrointest Liver Physiol 2011; 301 (1) G110-G118
  • 44 Clouzeau-Girard H, Guyot C, Combe C , et al. Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices. Lab Invest 2006; 86 (3) 275-285
  • 45 Borkham-Kamphorst E, Schaffrath C, Van de Leur E , et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling. Biochim Biophys Acta 2014; 1843 (5) 902-914
  • 46 Kinnman N, Housset C. Peribiliary myofibroblasts in biliary type liver fibrosis. Front Biosci 2002; 7: d496-d503
  • 47 Guyot C, Combe C, Desmoulière A. The common bile duct ligation in rat: A relevant in vivo model to study the role of mechanical stress on cell and matrix behaviour. Histochem Cell Biol 2006; 126 (4) 517-523
  • 48 Kameyama A, Hatayama H, Kato J , et al. Light-curing of dental resins with GaN violet laser diode: the effect of photoinitiator on mechanical strength. Lasers Med Sci 2011; 26 (3) 279-283
  • 49 Omenetti A, Yang L, Li YX , et al. Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. Lab Invest 2007; 87 (5) 499-514
  • 50 Van Hul NK, Abarca-Quinones J, Sempoux C, Horsmans Y, Leclercq IA. Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology 2009; 49 (5) 1625-1635
  • 51 Wells RG, Kruglov E, Dranoff JA. Autocrine release of TGF-beta by portal fibroblasts regulates cell growth. FEBS Lett 2004; 559 (1-3) 107-110
  • 52 Wells RG. The portal fibroblast: not just a poor man's stellate cell. Gastroenterology 2014; 147 (1) 41-47
  • 53 Jhandier MN, Kruglov EA, Lavoie EG, Sévigny J, Dranoff JA. Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J Biol Chem 2005; 280 (24) 22986-22992
  • 54 Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2012; 9 (1) 44-54
  • 55 Russo FP, Alison MR, Bigger BW , et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 2006; 130 (6) 1807-1821
  • 56 Kisseleva T, Uchinami H, Feirt N , et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 2006; 45 (3) 429-438
  • 57 Higashiyama R, Moro T, Nakao S , et al. Negligible contribution of bone marrow-derived cells to collagen production during hepatic fibrogenesis in mice. Gastroenterology 2009; 137 (4) 1459-66.e1
  • 58 Scholten D, Reichart D, Paik YH , et al. Migration of fibrocytes in fibrogenic liver injury. Am J Pathol 2011; 179 (1) 189-198
  • 59 Asahina K, Tsai SY, Li P , et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 2009; 49 (3) 998-1011
  • 60 Li Y, Wang J, Asahina K. Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proc Natl Acad Sci U S A 2013; 110 (6) 2324-2329
  • 61 Chapman GB, Eagles DA. Ultrastructural features of Glisson's capsule and the overlying mesothelium in rat, monkey and pike liver. Tissue Cell 2007; 39 (5) 343-351
  • 62 Bhunchet E, Wake K. Role of mesenchymal cell populations in porcine serum-induced rat liver fibrosis. Hepatology 1992; 16 (6) 1452-1473
  • 63 Asahina K, Zhou B, Pu WT, Tsukamoto H. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 2011; 53 (3) 983-995
  • 64 Kramann R, Schneider RK, DiRocco DP , et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015; 16 (1) 51-66
  • 65 Sicklick JK, Li YX, Choi SS , et al. Role for hedgehog signaling in hepatic stellate cell activation and viability. Lab Invest 2005; 85 (11) 1368-1380
  • 66 Lua I, James D, Wang J, Wang KS, Asahina K. Mesodermal mesenchymal cells give rise to myofibroblasts, but not epithelial cells, in mouse liver injury. Hepatology 2014; 60 (1) 311-322
  • 67 Rowe RG, Lin Y, Shimizu-Hirota R , et al. Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol 2011; 31 (12) 2392-2403
  • 68 Díaz R, Kim JW, Hui JJ , et al. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum Pathol 2008; 39 (1) 102-115
  • 69 Rygiel KA, Robertson H, Marshall HL , et al. Epithelial-mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab Invest 2008; 88 (2) 112-123
  • 70 Omenetti A, Porrello A, Jung Y , et al. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest 2008; 118 (10) 3331-3342
  • 71 Williams MJ, Clouston AD, Forbes SJ. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology 2014; 146 (2) 349-356
  • 72 Marra F, Pinzani M. Role of hepatic stellate cells in the pathogenesis of portal hypertension. Nefrologia 2002; 22 (Suppl. 05) 34-40
  • 73 Winau F, Quack C, Darmoise A, Kaufmann SH. Starring stellate cells in liver immunology. Curr Opin Immunol 2008; 20 (1) 68-74
  • 74 Gabrielli GB, Casaril M, Stanzial AM, Colombari R, Pasino M, Corrocher R. Liver stellate cells and aminoterminal peptide of type III procollagen in chronic hepatitis C treated with interferon. Hepatogastroenterology 2003; 50 (54) 2017-2021
  • 75 Garcia-Tsao G, Friedman S, Iredale J, Pinzani M. Now there are many (stages) where before there was one: In search of a pathophysiological classification of cirrhosis. Hepatology 2010; 51 (4) 1445-1449
  • 76 Van Rossen E, Vander Borght S, van Grunsven LA , et al. Vinculin and cellular retinol-binding protein-1 are markers for quiescent and activated hepatic stellate cells in formalin-fixed paraffin embedded human liver. Histochem Cell Biol 2009; 131 (3) 313-325
  • 77 Guido M, Rugge M, Leandro G, Fiel IM, Thung SN. Hepatic stellate cell immunodetection and cirrhotic evolution of viral hepatitis in liver allografts. Hepatology 1997; 26 (2) 310-314
  • 78 Carpino G, Morini S, Ginanni Corradini S , et al. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Dig Liver Dis 2005; 37 (5) 349-356
  • 79 Akpolat N, Yahsi S, Godekmerdan A, Yalniz M, Demirbag K. The value of alpha-SMA in the evaluation of hepatic fibrosis severity in hepatitis B infection and cirrhosis development: a histopathological and immunohistochemical study. Histopathology 2005; 47 (3) 276-280
  • 80 Lau DT, Luxon BA, Xiao SY, Beard MR, Lemon SM. Intrahepatic gene expression profiles and alpha-smooth muscle actin patterns in hepatitis C virus induced fibrosis. Hepatology 2005; 42 (2) 273-281
  • 81 Khan MA, Poulos JE, Brunt EM , et al. Hepatic alpha-smooth muscle actin expression in hepatitis C patients before and after interferon therapy. Hepatogastroenterology 2001; 48 (37) 212-215
  • 82 Kweon YO, Goodman ZD, Dienstag JL , et al. Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. J Hepatol 2001; 35 (6) 749-755
  • 83 Schmitt-Gräff A, Krüger S, Bochard F, Gabbiani G, Denk H. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol 1991; 138 (5) 1233-1242
  • 84 Magness ST, Bataller R, Yang L, Brenner DA. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology 2004; 40 (5) 1151-1159
  • 85 Bansal R, Prakash J, Post E, Beljaars L, Schuppan D, Poelstra K. Novel engineered targeted interferon-gamma blocks hepatic fibrogenesis in mice. Hepatology 2011; 54 (2) 586-596