Semin Respir Crit Care Med 2015; 36(03): 347-357
DOI: 10.1055/s-0035-1549450
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Gene–Environment Interaction from International Cohorts: Impact on Development and Evolution of Occupational and Environmental Lung and Airway Disease

Adam Gaffney
1   Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
2   Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
,
David C. Christiani
1   Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
2   Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
29 May 2015 (online)

Abstract

Environmental and occupational pulmonary diseases impose a substantial burden of morbidity and mortality on the global population. However, it has been long observed that only some of those who are exposed to pulmonary toxicants go on to develop disease; increasingly, it is being recognized that genetic differences may underlie some of this person-to-person variability. Studies performed throughout the globe are demonstrating important gene–environment interactions for diseases as diverse as chronic beryllium disease, coal workers' pneumoconiosis, silicosis, asbestosis, byssinosis, occupational asthma, and pollution-associated asthma. These findings have, in many instances, elucidated the pathogenesis of these highly complex diseases. At the same time, however, translation of this research into clinical practice has, for good reasons, proceeded slowly. No genetic test has yet emerged with sufficiently robust operating characteristics to be clearly useful or practicable in an occupational or environmental setting. In addition, occupational genetic testing raises serious ethical and policy concerns. Therefore, the primary objective must remain ensuring that the workplace and the environment are safe for all.

 
  • References

  • 1 Romieu I, Sienra-Monge JJ, Ramírez-Aguilar M , et al. Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med 2002; 166 (5) 703-709
  • 2 Romieu I, Sienra-Monge JJ, Ramírez-Aguilar M , et al. Genetic polymorphism of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax 2004; 59 (1) 8-10
  • 3 Vineis P, Ahsan H, Parker M. Genetic screening and occupational and environmental exposures. Occup Environ Med 2005; 62 (9) 657-662 , 597
  • 4 Santo Tomas LH. Beryllium hypersensitivity and chronic beryllium lung disease. Curr Opin Pulm Med 2009; 15 (2) 165-169
  • 5 Samuel G, Maier LA. Immunology of chronic beryllium disease. Curr Opin Allergy Clin Immunol 2008; 8 (2) 126-134
  • 6 Seidler A, Euler U, Müller-Quernheim J , et al. Systematic review: Progression of beryllium sensitization to chronic beryllium disease. Occup Med (Lond) 2012; 62 (7) 506-513
  • 7 Saltini C, Amicosante M, Franchi A, Lombardi G, Richeldi L. Immunogenetic basis of environmental lung disease: lessons from the berylliosis model. Eur Respir J 1998; 12 (6) 1463-1475
  • 8 Christiani DC, Mehta AJ, Yu CL. Genetic susceptibility to occupational exposures. Occup Environ Med 2008; 65 (6) 430-436 , quiz 436, 397
  • 9 Richeldi L, Sorrentino R, Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium disease. Science 1993; 262 (5131) 242-244
  • 10 Saltini C, Richeldi L, Losi M , et al. Major histocompatibility locus genetic markers of beryllium sensitization and disease. Eur Respir J 2001; 18 (4) 677-684
  • 11 Wang Z, Farris GM, Newman LS , et al. Beryllium sensitivity is linked to HLA-DP genotype. Toxicology 2001; 165 (1) 27-38
  • 12 Maier L, Martyny J, Mroz M , et al. Genetic and environmental risk factors in beryllium sensitization and chronic beryllium disease. Chest 2002; 121 (3, Suppl): 81S
  • 13 Rossman MD, Stubbs J, Lee CW, Argyris E, Magira E, Monos D. Human leukocyte antigen Class II amino acid epitopes: susceptibility and progression markers for beryllium hypersensitivity. Am J Respir Crit Care Med 2002; 165 (6) 788-794
  • 14 McCanlies EC, Ensey JS, Schuler CR, Kreiss K, Weston A. The association between HLA-DPB1Glu69 and chronic beryllium disease and beryllium sensitization. Am J Ind Med 2004; 46 (2) 95-103
  • 15 Maier LA, McGrath DS, Sato H , et al. Influence of MHC class II in susceptibility to beryllium sensitization and chronic beryllium disease. J Immunol 2003; 171 (12) 6910-6918
  • 16 Richeldi L, Kreiss K, Mroz MM, Zhen B, Tartoni P, Saltini C. Interaction of genetic and exposure factors in the prevalence of berylliosis. Am J Ind Med 1997; 32 (4) 337-340
  • 17 Wang Z, White PS, Petrovic M , et al. Differential susceptibilities to chronic beryllium disease contributed by different Glu69 HLA-DPB1 and -DPA1 alleles. J Immunol 1999; 163 (3) 1647-1653
  • 18 Silveira LJ, McCanlies EC, Fingerlin TE , et al. Chronic beryllium disease, HLA-DPB1, and the DP peptide binding groove. J Immunol 2012; 189 (8) 4014-4023
  • 19 Lombardi G, Germain C, Uren J , et al. HLA-DP allele-specific T cell responses to beryllium account for DP-associated susceptibility to chronic beryllium disease. J Immunol 2001; 166 (5) 3549-3555
  • 20 Fontenot AP, Torres M, Marshall WH, Newman LS, Kotzin BL. Beryllium presentation to CD4+ T cells underlies disease-susceptibility HLA-DP alleles in chronic beryllium disease. Proc Natl Acad Sci U S A 2000; 97 (23) 12717-12722
  • 21 Amicosante M, Sanarico N, Berretta F , et al. Beryllium binding to HLA-DP molecule carrying the marker of susceptibility to berylliosis glutamate beta 69. Hum Immunol 2001; 62 (7) 686-693
  • 22 Scott BL, Wang Z, Marrone BL, Sauer NN. Potential binding modes of beryllium with the class II major histocompatibility complex HLA-DP: a combined theoretical and structural database study. J Inorg Biochem 2003; 94 (1-2) 5-13
  • 23 Snyder JA, Weston A, Tinkle SS, Demchuk E. Electrostatic potential on human leukocyte antigen: implications for putative mechanism of chronic beryllium disease. Environ Health Perspect 2003; 111 (15) 1827-1834
  • 24 Amicosante M, Berretta F, Rossman M , et al. Identification of HLA-DRPhebeta47 as the susceptibility marker of hypersensitivity to beryllium in individuals lacking the berylliosis-associated supratypic marker HLA-DPGlubeta69. Respir Res 2005; 6: 94
  • 25 Maier LA, Raynolds MV, Young DA, Barker EA, Newman LS. Angiotensin-1 converting enzyme polymorphisms in chronic beryllium disease. Am J Respir Crit Care Med 1999; 159 (4, Pt 1) 1342-1350
  • 26 Maier LA, Sawyer RT, Bauer RA , et al. High beryllium-stimulated TNF-alpha is associated with the -308 TNF-alpha promoter polymorphism and with clinical severity in chronic beryllium disease. Am J Respir Crit Care Med 2001; 164 (7) 1192-1199
  • 27 Amicosante M, Berretta F, Franchi A , et al. HLA-DP-unrestricted TNF-alpha release in beryllium-stimulated peripheral blood mononuclear cells. Eur Respir J 2002; 20 (5) 1174-1178
  • 28 Silver K, Sharp RR. Ethical considerations in testing workers for the -Glu69 marker of genetic susceptibility to chronic beryllium disease. J Occup Environ Med 2006; 48 (4) 434-443
  • 29 Yucesoy B, Luster MI. Genetic susceptibility in pneumoconiosis. Toxicol Lett 2007; 168 (3) 249-254
  • 30 Petsonk EL, Rose C, Cohen R. Coal mine dust lung disease. New lessons from old exposure. Am J Respir Crit Care Med 2013; 187 (11) 1178-1185
  • 31 Zhai R, Jetten M, Schins RP, Franssen H, Borm PJ. Polymorphisms in the promoter of the tumor necrosis factor-alpha gene in coal miners. Am J Ind Med 1998; 34 (4) 318-324
  • 32 Kim KA, Cho YY, Cho JS , et al. Tumor necrosis factor-alpha gene promoter polymorphism in coal workers' pneumoconiosis. Mol Cell Biochem 2002; 234-235 (1-2) 205-209
  • 33 Wang XT, Ohtsuka Y, Kimura K , et al. Antithetical effect of tumor necrosis factor-alphagene polymorphism on coal workers' pneumoconiosis (CWP). Am J Ind Med 2005; 48 (1) 24-29
  • 34 Ates I, Suzen HS, Yucesoy B, Tekin IO, Karakaya A. Association of cytokine gene polymorphisms in CWP and its severity in Turkish coal workers. Am J Ind Med 2008; 51 (10) 741-747
  • 35 Yucesoy B, Johnson VJ, Kissling GE , et al. Genetic susceptibility to progressive massive fibrosis in coal miners. Eur Respir J 2008; 31 (6) 1177-1182
  • 36 Nadif R, Mintz M, Marzec J, Jedlicka A, Kauffmann F, Kleeberger SR. IL18 and IL18R1 polymorphisms, lung CT and fibrosis: A longitudinal study in coal miners. Eur Respir J 2006; 28 (6) 1100-1105
  • 37 Wang X, Ohtsuka Y, Kimura K , et al. Mannose-binding lectin gene polymorphisms and the development of coal workers' pneumoconiosis in Japan. Am J Ind Med 2008; 51 (7) 548-553
  • 38 Zhang H, Jin T, Zhang G, Chen L, Zou W, Li QQ. Polymorphisms in heat-shock protein 70 genes are associated with coal workers' pneumoconiosis in southwestern China. In Vivo 2011; 25 (2) 251-257
  • 39 Liu G, Cheresh P, Kamp DW. Molecular basis of asbestos-induced lung disease. Annu Rev Pathol 2013; 8: 161-187
  • 40 Smith CM, Kelsey KT, Wiencke JK, Leyden K, Levin S, Christiani DC. Inherited glutathione-S-transferase deficiency is a risk factor for pulmonary asbestosis. Cancer Epidemiol Biomarkers Prev 1994; 3 (6) 471-477
  • 41 Franko A, Dodic-Fikfak M, Arnerić N, Dolzan V. Glutathione S-transferases GSTM1 and GSTT1 polymorphisms and asbestosis. J Occup Environ Med 2007; 49 (6) 667-671
  • 42 Kukkonen MK, Hämäläinen S, Kaleva S , et al. Genetic susceptibility to asbestos-related fibrotic pleuropulmonary changes. Eur Respir J 2011; 38 (3) 672-678
  • 43 Hirvonen A, Saarikoski ST, Linnainmaa K , et al. Glutathione S-transferase and N-acetyltransferase genotypes and asbestos-associated pulmonary disorders. J Natl Cancer Inst 1996; 88 (24) 1853-1856
  • 44 Franko A, Dolzan V, Arnerić N, Dodic-Fikfak M. The influence of genetic polymorphisms of GSTP1 on the development of asbestosis. J Occup Environ Med 2008; 50 (1) 7-12
  • 45 Franko A, Dodic-Fikfak M, Arnerić N, Dolzan V. Manganese and extracellular superoxide dismutase polymorphisms and risk for asbestosis. J Biomed Biotechnol 2009; 2009: 493083
  • 46 Kukkonen MK, Vehmas T, Piirilä P, Hirvonen A. Genes involved in innate immunity associated with asbestos-related fibrotic changes. Occup Environ Med 2014; 71 (1) 48-54
  • 47 Franko A, Dolžan V, Arnerić N, Dodič-Fikfak M. The influence of gene-gene and gene-environment interactions on the risk of asbestosis. Biomed Res Int 2013; 2013: 405743
  • 48 Leung CC, Yu IT, Chen W. Silicosis. Lancet 2012; 379 (9830) 2008-2018
  • 49 Yucesoy B, Vallyathan V, Landsittel DP, Simeonova P, Luster MI. Cytokine polymorphisms in silicosis and other pneumoconioses. Mol Cell Biochem 2002; 234-235 (1-2) 219-224
  • 50 Yucesoy B, Vallyathan V, Landsittel DP , et al. Polymorphisms of the IL-1 gene complex in coal miners with silicosis. Am J Ind Med 2001; 39 (3) 286-291
  • 51 Yucesoy B, Vallyathan V, Landsittel DP , et al. Association of tumor necrosis factor-alpha and interleukin-1 gene polymorphisms with silicosis. Toxicol Appl Pharmacol 2001; 172 (1) 75-82
  • 52 Corbett EL, Mozzato-Chamay N, Butterworth AE , et al. Polymorphisms in the tumor necrosis factor-alpha gene promoter may predispose to severe silicosis in black South African miners. Am J Respir Crit Care Med 2002; 165 (5) 690-693
  • 53 Wu F, Qu Y, Tang Y, Cao D, Sun P, Xia Z. Lack of association between cytokine gene polymorphisms and silicosis and pulmonary tuberculosis in Chinese iron miners. J Occup Health 2008; 50 (6) 445-454
  • 54 Wu F, Xia Z, Qu Y , et al. Genetic polymorphisms of IL-1A, IL-1B, IL-1RN, NFKB1, FAS, and FASL, and risk of silicosis in a Chinese occupational population. Am J Ind Med 2008; 51 (11) 843-851
  • 55 Wang YW, Lan JY, Yang LY, Wang De J, Kuang J. TNF-α and IL-1RA polymorphisms and silicosis susceptibility in Chinese workers exposed to silica particles: a case-control study. Biomed Environ Sci 2012; 25 (5) 517-525
  • 56 Li Z, Xue J, Yan S, Chen P, Chen L. Association between tumor necrosis factor-α 308G/A gene polymorphism and silicosis susceptibility: a meta-analysis. PLoS ONE 2013; 8 (10) e76614
  • 57 Beck GJ, Schachter EN, Maunder LR, Schilling RS. A prospective study of chronic lung disease in cotton textile workers. Ann Intern Med 1982; 97 (5) 645-651
  • 58 Glindmeyer HW, Lefante JJ, Jones RN, Rando RJ, Weill H. Cotton dust and across-shift change in FEV1 as predictors of annual change in FEV1. Am J Respir Crit Care Med 1994; 149 (3, Pt 1) 584-590
  • 59 Christiani DC, Wang XR, Pan LD , et al. Longitudinal changes in pulmonary function and respiratory symptoms in cotton textile workers. A 15-yr follow-up study. Am J Respir Crit Care Med 2001; 163 (4) 847-853
  • 60 Castellan RM, Olenchock SA, Kinsley KB, Hankinson JL. Inhaled endotoxin and decreased spirometric values. An exposure-response relation for cotton dust. N Engl J Med 1987; 317 (10) 605-610
  • 61 Rylander R, Bake B, Fischer JJ, Helander IM. Pulmonary function and symptoms after inhalation of endotoxin. Am Rev Respir Dis 1989; 140 (4) 981-986
  • 62 Víctor VM, De la Fuente M. Several functions of immune cells in mice changed by oxidative stress caused by endotoxin. Physiol Res 2003; 52 (6) 789-796
  • 63 Ryan KA, Smith Jr MF, Sanders MK, Ernst PB. Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infect Immun 2004; 72 (4) 2123-2130
  • 64 Hang J, Zhou W, Wang X , et al. Microsomal epoxide hydrolase, endotoxin, and lung function decline in cotton textile workers. Am J Respir Crit Care Med 2005; 171 (2) 165-170
  • 65 Thomas PS, Yates DH, Barnes PJ. Tumor necrosis factor-alpha increases airway responsiveness and sputum neutrophilia in normal human subjects. Am J Respir Crit Care Med 1995; 152 (1) 76-80
  • 66 Michel O, Ginanni R, Le Bon B, Content J, Duchateau J, Sergysels R. Inflammatory response to acute inhalation of endotoxin in asthmatic patients. Am Rev Respir Dis 1992; 146 (2) 352-357
  • 67 Wesselius LJ, Nelson ME, Bailey K, O'Brien-Ladner AR. Rapid lung cytokine accumulation and neutrophil recruitment after lipopolysaccharide inhalation by cigarette smokers and nonsmokers. J Lab Clin Med 1997; 129 (1) 106-114
  • 68 Zhang H, Hang J, Wang X , et al. TNF polymorphisms modify endotoxin exposure-associated longitudinal lung function decline. Occup Environ Med 2007; 64 (6) 409-413
  • 69 Zhang R, Zhao Y, Chu M , et al. A large scale gene-centric association study of lung function in newly-hired female cotton textile workers with endotoxin exposure. PLoS ONE 2013; 8 (3) e59035
  • 70 Vandenplas O, Toren K, Blanc PD. Health and socioeconomic impact of work-related asthma. Eur Respir J 2003; 22 (4) 689-697
  • 71 Tarlo SM, Lemiere C. Occupational asthma. N Engl J Med 2014; 370 (7) 640-649
  • 72 Bignon JS, Aron Y, Ju LY , et al. HLA class II alleles in isocyanate-induced asthma. Am J Respir Crit Care Med 1994; 149 (1) 71-75
  • 73 Balboni A, Baricordi OR, Fabbri LM, Gandini E, Ciaccia A, Mapp CE. Association between toluene diisocyanate-induced asthma and DQB1 markers: a possible role for aspartic acid at position 57. Eur Respir J 1996; 9 (2) 207-210
  • 74 Mapp CE, Beghè B, Balboni A , et al. Association between HLA genes and susceptibility to toluene diisocyanate-induced asthma. Clin Exp Allergy 2000; 30 (5) 651-656
  • 75 Horne C, Quintana PJ, Keown PA, Dimich-Ward H, Chan-Yeung M. Distribution of DRB1 and DQB1 HLA class II alleles in occupational asthma due to western red cedar. Eur Respir J 2000; 15 (5) 911-914
  • 76 Rihs HP, Barbalho-Krölls T, Huber H, Baur X. No evidence for the influence of HLA class II in alleles in isocyanate-induced asthma. Am J Ind Med 1997; 32 (5) 522-527
  • 77 Beghé B, Padoan M, Moss CT , et al. Lack of association of HLA class I genes and TNF alpha-308 polymorphism in toluene diisocyanate-induced asthma. Allergy 2004; 59 (1) 61-64
  • 78 Matheson JM, Johnson VJ, Luster MI. Immune mediators in a murine model for occupational asthma: studies with toluene diisocyanate. Toxicol Sci 2005; 84 (1) 99-109
  • 79 Bernstein DI, Wang N, Campo P , et al. Diisocyanate asthma and gene-environment interactions with IL4RA, CD-14, and IL-13 genes. Ann Allergy Asthma Immunol 2006; 97 (6) 800-806
  • 80 Piirilä P, Wikman H, Luukkonen R , et al. Glutathione S-transferase genotypes and allergic responses to diisocyanate exposure. Pharmacogenetics 2001; 11 (5) 437-445
  • 81 Mapp CE, Fryer AA, De Marzo N , et al. Glutathione S-transferase GSTP1 is a susceptibility gene for occupational asthma induced by isocyanates. J Allergy Clin Immunol 2002; 109 (5) 867-872
  • 82 Wikman H, Piirilä P, Rosenberg C , et al. N-Acetyltransferase genotypes as modifiers of diisocyanate exposure-associated asthma risk. Pharmacogenetics 2002; 12 (3) 227-233
  • 83 Kim SH, Cho BY, Park CS , et al. Alpha-T-catenin (CTNNA3) gene was identified as a risk variant for toluene diisocyanate-induced asthma by genome-wide association analysis. Clin Exp Allergy 2009; 39 (2) 203-212
  • 84 Bernstein DI, Kashon M, Lummus ZL , et al. CTNNA3 (α-catenin) gene variants are associated with diisocyanate asthma: a replication study in a Caucasian worker population. Toxicol Sci 2013; 131 (1) 242-246
  • 85 Lim SS, Vos T, Flaxman AD , et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859) 2224-2260
  • 86 Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet 2014; 383 (9928) 1581-1592
  • 87 Perez L, Declercq C, Iñiguez C , et al. Chronic burden of near-roadway traffic pollution in 10 European cities (APHEKOM network). Eur Respir J 2013; 42 (3) 594-605
  • 88 Robinson CL, Baumann LM, Romero K , et al. Effect of urbanisation on asthma, allergy and airways inflammation in a developing country setting. Thorax 2011; 66 (12) 1051-1057
  • 89 Bernstein AS, Rice MB. Lungs in a warming world: climate change and respiratory health. Chest 2013; 143 (5) 1455-1459
  • 90 Rice MB, Thurston GD, Balmes JR, Pinkerton KE. Climate change. A global threat to cardiopulmonary health. Am J Respir Crit Care Med 2014; 189 (5) 512-519
  • 91 Bowler RP, Crapo JD. Oxidative stress in allergic respiratory diseases. J Allergy Clin Immunol 2002; 110 (3) 349-356
  • 92 Liu L, Poon R, Chen L , et al. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect 2009; 117 (4) 668-674
  • 93 Patel MM, Chillrud SN, Deepti KC, Ross JM, Kinney PL. Traffic-related air pollutants and exhaled markers of airway inflammation and oxidative stress in New York City adolescents. Environ Res 2013; 121: 71-78
  • 94 Neophytou AM, Hart JE, Cavallari JM , et al. Traffic-related exposures and biomarkers of systemic inflammation, endothelial activation and oxidative stress: a panel study in the US trucking industry. Environ Health 2013; 12: 105
  • 95 Romieu I, Moreno-Macias H, London SJ. Gene by environment interaction and ambient air pollution. Proc Am Thorac Soc 2010; 7 (2) 116-122
  • 96 McDonnell WF. Intersubject variability in human acute ozone responsiveness. Pharmacogenetics 1991; 1 (2) 110-113
  • 97 David GL, Romieu I, Sienra-Monge JJ , et al. Nicotinamide adenine dinucleotide (phosphate) reduced:quinone oxidoreductase and glutathione S-transferase M1 polymorphisms and childhood asthma. Am J Respir Crit Care Med 2003; 168 (10) 1199-1204
  • 98 Bergamaschi E, De Palma G, Mozzoni P , et al. Polymorphism of quinone-metabolizing enzymes and susceptibility to ozone-induced acute effects. Am J Respir Crit Care Med 2001; 163 (6) 1426-1431
  • 99 Corradi M, Alinovi R, Goldoni M , et al. Biomarkers of oxidative stress after controlled human exposure to ozone. Toxicol Lett 2002; 134 (1-3) 219-225
  • 100 Romieu I, Ramirez-Aguilar M, Sienra-Monge JJ , et al. GSTM1 and GSTP1 and respiratory health in asthmatic children exposed to ozone. Eur Respir J 2006; 28 (5) 953-959
  • 101 Chen C, Arjomandi M, Tager IB, Holland N, Balmes JR. Effects of antioxidant enzyme polymorphisms on ozone-induced lung function changes. Eur Respir J 2007; 30 (4) 677-683
  • 102 Islam T, Berhane K, McConnell R , et al. Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children. Thorax 2009; 64 (3) 197-202
  • 103 Moreno-Macías H, Dockery DW, Schwartz J , et al. Ozone exposure, vitamin C intake, and genetic susceptibility of asthmatic children in Mexico City: a cohort study. Respir Res 2013; 14: 14
  • 104 Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet 2004; 363 (9403) 119-125
  • 105 Reddy P, Naidoo RN, Robins TG , et al. GSTM1, GSTP1, and NQO1 polymorphisms and susceptibility to atopy and airway hyperresponsiveness among South African schoolchildren. Lung 2010; 188 (5) 409-414
  • 106 Lee YL, Lin YC, Lee YC, Wang JY, Hsiue TR, Guo YL. Glutathione S-transferase P1 gene polymorphism and air pollution as interactive risk factors for childhood asthma. Clin Exp Allergy 2004; 34 (11) 1707-1713
  • 107 Salam MT, Lin PC, Avol EL, Gauderman WJ, Gilliland FD. Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. Thorax 2007; 62 (12) 1050-1057
  • 108 Islam T, McConnell R, Gauderman WJ, Avol E, Peters JM, Gilliland FD. Ozone, oxidant defense genes, and risk of asthma during adolescence. Am J Respir Crit Care Med 2008; 177 (4) 388-395
  • 109 Yang IA, Holz O, Jörres RA , et al. Association of tumor necrosis factor-alpha polymorphisms and ozone-induced change in lung function. Am J Respir Crit Care Med 2005; 171 (2) 171-176
  • 110 Li YF, Gauderman WJ, Avol E, Dubeau L, Gilliland FD. Associations of tumor necrosis factor G-308A with childhood asthma and wheezing. Am J Respir Crit Care Med 2006; 173 (9) 970-976
  • 111 Wu H, Romieu I, Sienra-Monge JJ , et al. Parental smoking modifies the relation between genetic variation in tumor necrosis factor-alpha (TNF) and childhood asthma. Environ Health Perspect 2007; 115 (4) 616-622
  • 112 Kerkhof M, Postma DS, Brunekreef B , et al. Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax 2010; 65 (8) 690-697
  • 113 Yang IA, Fong KM, Zimmerman PV, Holgate ST, Holloway JW. Genetic susceptibility to the respiratory effects of air pollution. Thorax 2008; 63 (6) 555-563
  • 114 James J. Health Policy Brief: Workplace Wellness Program. Health Affairs 2013. Available at www.healthaffairs.org/healthpolicybriefs/brief.php?brief_id=93 . Accessed in 2014