Geburtshilfe Frauenheilkd 2015; 75(07): 664-667
DOI: 10.1055/s-0035-1546039
Aktuell diskutiert
Georg Thieme Verlag KG Stuttgart · New York

Onkologie. Relevante Genmutationen bei familiärem Brust- und Eierstockkrebs

Sabine Grill
,
Marion Kiechle
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
30. Juli 2015 (online)

Jährlich erkranken in Deutschland ca. 57 000 Frauen an einem Mammakarzinom, wovon 10 % als hereditär angesehen werden. Aufgrund des familiär häufig gemeinsamen Vorkommens von Mamma- und Ovarialkarzinomen spricht man vom „hereditären Mamma- und Ovarialkarzinomsyndrom“ (HBOC) [1]. Seit geraumer Zeit sind Keimbahnmutationen bekannt, die für das hereditäre Mamma- und Ovarialkarzinom ursächlich sind [1]. Mithilfe moderner Sequenzierungstechnologien können per Multigenanalyse bis zu 100 Gene parallel untersucht werden, doch deren klinische Bedeutung muss noch validiert werden. Welche klinischen Empfehlungen dennoch heute schon ausgesprochen werden können, wenn eine bestimmte Mutation vorliegt, lesen Sie im Folgenden.

Literaturverzeichnis als PDF

 
  • Literatur

  • 1 Thomssen C, Wand D. Hereditärer Brustkrebs. Der Onkologe 2012; 18: 216-223
  • 2 Kobayashi H, Ohno S, Sasaki Y et al. Hereditary breast and ovarian cancer susceptibility genes (review). Oncol Rep 2013; 30: 1019-1029
  • 3 King MC, Marks JH, Mendell JB. New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 und BRCA2. Science 2003; 302: 643-646
  • 4 Rhiem K, Engel C, Graeser M et al. The risk of contralateral breast cancer in patients from BRCA1/2 negative high risk families as compared to patients from BRCA1 or BRCA2 positive families: a retrospective cohort study. Breast Cancer Res 2012; 14: R156
  • 5 Stevens KN, Wang X, Fredericksen Z et al. Evaluation of chromosome 6p22 as a breast cancer risk modifier locus in a follow-up study of BRCA2 mutation carriers. Breast Cancer Res Treat 2012; 136: 295-302
  • 6 Antoniou AC, Beesley J, McGuffog L et al. Common breast cancer susceptibility allels and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk predicition. Cancer Res 2010; 70: 9742-9754
  • 7 Muy-Kheng M, Kroiss R, Muhr D et al. Central European BRCA2 mutation carriers: birth cohort status correlates with onset of breast cancer. Maturitas 2014; 77: 68-72
  • 8 Kroiss R, Winkler V, Bikas D et al. Younger birth cohort correlates with higher breast and ovarian cancer risk in European BRCA1 mutation carriers. Hum Mutat 2005; 26: 583-589
  • 9 Mavaddat N, Peock S, Frost D et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: a result from prospective analysis of EMBRACE. J Natl Cancer Inst 2013; 105: 812-822
  • 10 James PA, Sawyer S, Boyle S et al. Large genomic rearrangements in the familial breast and ovarian cancer gene BRCA1 are associated with an increased frequency of high risk features. Fam Cancer 2015; [epub ahead of print]
  • 11 Thompson D, Easton DF. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Am J Hum Genet 2001; 68: 410-419
  • 12 Brose MS, Rebbeck TR, Calzone KA et al. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. J Natl Cancer Inst 2002; 94: 1365-1372
  • 13 Thompson D, Easton DF. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002; 94: 1358-1365
  • 14 The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 1999; 91: 1310-1316
  • 15 Hahn SA, Greenhalf B, Ellis I et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 2003; 95: 214-221
  • 16 Meindl A, Hellebrand H, Wiek C et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nature Genet 2010; 42: 410-414
  • 17 Gonzalez KD, Noltner KA, Buzin CH et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p 53 germline mutations. J Clin Oncol 2009; 27: 1250-1256
  • 18 Wilson JR, Bateman AC, Hanson H et al. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet 2010; 47: 771-774
  • 19 Tinat J, Bougeard G, Baert-Desurmont S et al. 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol 2009; 27: e.108-e.109
  • 20 Olivier M, Goldgar DE, Sodha N et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 2003; 63: 6643-6650
  • 21 Walsh T, Casadei S, Coats KH et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 2006; 295: 1379-1388
  • 22 Melhem-Bertrandt A, Bojadzieva J, Ready KJ et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer 2012; 118: 908-913
  • 23 Wilson JR, Bateman AC, Hanson H et al. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet 2010; 47: 771-774
  • 24 Li J, Yen C, Liaw D et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943-1947
  • 25 Alexander EK, Chan-Smutko G, Saksena MA et al. Case records of the Massachusetts General Hospital. Case 19-2013. A 35-year-old woman with recurrent goiter and ductal carcinoma of the breast. N Engl J Med 2013; 368: 2416-2424
  • 26 Starink TM, van der Veen JP, Arwert F et al. The Cowden syndrome: a clinical and genetic study in 21 patients. Clin Genet 1986; 29: 222-233
  • 27 Schrager CA, Schneider D, Gruener AC et al. Similarities of cutaneous and breast pathology in Cowdenʼs Syndrome. Exp Dermatol 1998; 7: 380-390
  • 28 Schrager CA, Schneider D, Gruener AC et al. Clinical and pathological features of breast disease in Cowdenʼs syndrome: an underrecognized syndrome with an increased risk of breast cancer. Hum Pathol 1998; 29: 47-53
  • 29 National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: genetic/familial high-risk assessment: breast and ovarian. JNCCN 2010; 8: 562-594
  • 30 Conacci-Sorrel M, Zhurinsky J, Ben-Zeʼev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 2002; 109: 987-991
  • 31 Pharoah PD, Guilford P, Caldas C. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 2001; 121: 1348-1353
  • 32 Fitzgerald RC, Hardwick R, Huntsman D et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet 2010; 47: 436-444
  • 33 Weissman SM, Bellcross C, Bittner CC et al. Genetic counseling considerations in the evaluation of families for Lynch syndrome – a review. J Genet Couns 2011; 20: 5-19
  • 34 Aarnio M, Sankila R, Pukkala E et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 1999; 81: 214-218
  • 35 Vasen HF, Morreau H, Nortier JW. Is breast cancer part of the tumor spectrum of hereditary nonpolyposis colorectal cancer?. Am J Hum Genet 2001; 68: 1533-1534
  • 36 Parc Y, Boisson C, Thomas G et al. Cancer risk in 348 French MSH2 or MLH1 gene carriers. J Med Genet 2003; 40: 208-213
  • 37 Win AK, Young JP, Lindor NM et al. Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol 2012; 30: 958-964
  • 38 Win A, Lindor NM, Jenkins MA. Risk of breast cancer in Lynch syndrome: a systematic review. Breast Cancer Res 2013; 15: R27
  • 39 Stracker TH, Usui T, Petrini JH. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 2009; 8: 1047-1054
  • 40 CHEK2 Breast Cancer Case-Control Consortium. CHEK2 1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet 2004; 74: 1175-1182
  • 41 Gage M, Wattendorf D, Henry LR. Translational advances regarding hereditary breast cancer syndromes. J Surg Oncol 2012; 105: 444-451
  • 42 Adank MA, Jonker MA, Kluijt I et al. CHEK2*1100delC homozygosity is associated with a high breast cancer risk in women. J Med Genet 2011; 48: 860-863
  • 43 Mellemkjaer L, Dahl C, Olsen JH et al. Risk for contralateral breast cancer among carriers of the CHEK2*1100delC mutation in the WECARE Study. Br J Cancer 2008; 98: 728-733
  • 44 Ahmed M, Rahman N. ATM and breast cancer susceptibility. Oncogene 2006; 25: 5906-5911
  • 45 Thompson D, Duedal S, Kirner J et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 2005; 97: 813-822
  • 46 Xia B, Sheng Q, Nakanishi K et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 2006; 22: 719-729
  • 47 Rahman N, Seal S, Thompson D et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 2007; 39: 165-167
  • 48 Fernandes PH, Saam J, Peterson J et al. Comprehensive sequencing of PALB2 in patients with breast cancer suggests PALB2 mutations explain a subset of hereditary breast cancer. Cancer 2014; 120: 963-967
  • 49 Antoniou AC, Casadei S, Heikkinen T et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 2014; 371: 497-506