Kardiologie up2date 2015; 11(03): 177-187
DOI: 10.1055/s-0034-1393031
Diagnostische Verfahren und Bildgebung
© Georg Thieme Verlag KG Stuttgart · New York

Nicht invasive Ischämiediagnostik – wie ist der Stand seit den ESC-Leitlinien 2013?

Leif-Christopher Engel
,
Costantina Manes
,
Ulf Landmesser
,
Boris Bigalke
Further Information

Publication History

Publication Date:
28 September 2015 (online)

Abstract

Coronary artery disease continues to be the leading cause of death in developed countries. As coronary atherosclerosis worsens, luminal narrowing caused by coronary plaque mass may result in haemodynamic obstruction and subsequently, angina pectoris symptoms may occur. To avoid redundant invasive procedures and minimize its complications, noninvasive imaging is often performed for an initial assessment of patients with suspected coronary artery disease, serving as a gatekeeper for invasive coronary angiography. The diagnostic accuracy and prognostic value of these strategies have been confirmed in many single-center or multi-center trials. In 2013 the updated ESC guidelines on the management on stable coronary artery disease were released, highlighting the aspect that the diagnostic algorithm is based on the pre-test-probability of coronary artery disease. The consideration of new imaging modalities such as cardiovascular magnetic resonance imaging and coronary CT angiography however, makes it harder for the referring physician to choose the right imaging modality for a patient. This article reviews the clinical utility and the limitations of the most widely used noninvasive imaging modalities and summarizes the diagnostic work-up according to the current ESC guidelines.

Kernaussagen
  • In den aktuellen ESC-Leitlinien zum Management der stabilen KHK wird die nicht invasive Ischämiediagnostik, deren klinische Wertigkeit in vielen Einzel- und Multicenter-Studien gut belegt ist, höher eingestuft als das Belastungs-EKG.

  • Die Wahl eines geeigneten bildgebenden Verfahrens zur Diagnose oder Ausschluss einer KHK richtet sich neben bestimmten Patientencharakteristika nach der lokalen Verfügbarkeit und der ausreichenden Expertise der behandelnden Ärzte, um die Indikation korrekt zu stellen und die Untersuchung mit größtem Nutzen für den Patienten durchzuführen.

  • Im Vergleich zu allen anderen nicht invasiven Ischämietests sind besonders die Stress-Kardio-MRT und die Kardio-CT geeignet, um eine signifikante Koronarstenose zu identifizieren.

 
  • Literatur

  • 1 Roger VL, Go AS, Lloyd-Jones DM et al. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation 2011; 123: e18-e209
  • 2 Virmani R, Burke AP, Farb A et al. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47: C13-C18
  • 3 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473: 317-325
  • 4 Deutsche Herzstiftung (Hg.) FaM: Deutscher Herzbericht 2013 (25. Bericht). 2013 http://wwwherzstiftungde/pdf/presse/herzbericht-2013-dhs-morbiditaet-mortalitaet.pdf
  • 5 Noto Jr TJ, Johnson LW, Krone R et al. Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Cathet Cardiovasc Diagn 1991; 24: 75-83
  • 6 Task Force M, Montalescot G, Sechtem U et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013; 34: 2949-3003
  • 7 Pellikka PA, Nagueh SF, Elhendy AA et al. American Society of E. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 2007; 20: 1021-1041
  • 8 Sicari R, Nihoyannopoulos P, Evangelista A et al. European Association of E. Stress Echocardiography Expert Consensus Statement – Executive Summary: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur Heart J 2009; 30: 278-289
  • 9 Fleischmann KE, Hunink MG, Kuntz KM et al. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA 1998; 280: 913-920
  • 10 Froelicher VF, Lehmann KG, Thomas R et al. The electrocardiographic exercise test in a population with reduced workup bias: diagnostic performance, computerized interpretation, and multivariable prediction. Veterans Affairs Cooperative Study in Health Services #016 (QUEXTA) Study Group. Quantitative Exercise Testing and Angiography. Ann Intern Med 1998; 128: 965-974
  • 11 Morise AP, Diamond GA. Comparison of the sensitivity and specificity of exercise electrocardiography in biased and unbiased populations of men and women. Am Heart J 1995; 130: 741-747
  • 12 Sicari R, Nihoyannopoulos P, Evangelista A et al. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 2008; 9: 415-437
  • 13 Klocke FJ, Baird MG, Lorell BH et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging – executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003; 42: 1318-1333
  • 14 Budoff MJ, Dowe D, Jollis JG et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008; 52: 1724-1732
  • 15 Meijboom WB, Meijs MF, Schuijf JD et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 2008; 52: 2135-2144
  • 16 Greenwood JP, Maredia N, Younger JF et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 2012; 379: 453-460
  • 17 de Jong MC, Genders TS, van Geuns RJ et al. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol 2012; 22: 1881-1895
  • 18 Klocke FJ, Baird MG, Lorell BH et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging – executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation 2003; 108: 1404-1418
  • 19 Kapur A, Latus KA, Davies G et al. A comparison of three radionuclide myocardial perfusion tracers in clinical practice: the ROBUST study. Eur J Nucl Med Mol Imaging 2002; 29: 1608-1616
  • 20 Borges-Neto S, Shaw LK. The added value of simultaneous myocardial perfusion and left ventricular function. Curr Opin Cardiol 1999; 14: 460-463
  • 21 Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 1998; 32: 57-62
  • 22 Hachamovitch R, Rozanski A, Shaw LJ et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J 2011; 32: 1012-1024
  • 23 Shaw LJ, Berman DS, Maron DJ et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008; 117: 1283-1291
  • 24 Shaw LJ, Hachamovitch R, Berman DS et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. J Am Coll Cardiol 1999; 33: 661-669
  • 25 Stewart RE, Schwaiger M, Molina E et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991; 67: 1303-1310
  • 26 Nakazato R, Berman DS, Alexanderson E et al. Myocardial perfusion imaging with PET. Imaging Med 2013; 5: 35-46
  • 27 Schwaiger M, Ziegler S, Nekolla SG. PET/CT: challenge for nuclear cardiology. J Nucl Med 2005; 46: 1664-1678
  • 28 Catalano OA, Rosen BR, Sahani DV et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients – a hypothesis-generating exploratory study. Radiology 2013; 269: 857-869
  • 29 Douglas PS, Hoffmann U, Patel MR et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 2015; 372: 1291-1300
  • 30 Goldstein JA, Chinnaiyan KM, Abidov A et al. The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) trial. J Am Coll Cardiol 2011; 58: 1414-1422
  • 31 Hoffmann U, Truong QA, Schoenfeld DA et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med 2012; 367: 299-308
  • 32 Norgaard BL, Leipsic J, Gaur S et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014; 63: 1145-1155
  • 33 Cury RC, Kitt TM, Feaheny K et al. A randomized, multicenter, multivendor study of myocardial perfusion imaging with regadenoson CT perfusion vs single photon emission CT. J Cardiovasc Comput Tomogr 2015; 9: 103-112
  • 34 Abbara S, Arbab-Zadeh A, Callister TQ et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 2009; 3: 190-204
  • 35 Achenbach S, Goroll T, Seltmann M et al. Detection of coronary artery stenoses by low-dose, prospectively ECG-triggered, high-pitch spiral coronary CT angiography. JACC Cardiovasc Imaging 2011; 4: 328-337
  • 36 Ghoshhajra BB, Engel LC, Major GP et al. Evolution of coronary computed tomography radiation dose reduction at a tertiary referral center. Am J Med 2012; 125: 764-772
  • 37 Moschetti K, Muzzarelli S, Pinget C et al. Cost evaluation of cardiovascular magnetic resonance versus coronary angiography for the diagnostic work-up of coronary artery disease: application of the European Cardiovascular Magnetic Resonance registry data to the German, United Kingdom, Swiss, and United States health care systems. J Cardiovasc Magn Reson 2012; 14: 35
  • 38 Prati F, Guagliumi G, Mintz GS et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J 2012; 33: 2513-2520
  • 39 Grothues F, Smith GC, Moon JC et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002; 90: 29-34
  • 40 White JA, Patel MR. The role of cardiovascular MRI in heart failure and the cardiomyopathies. Cardiol Clin 2007; 25: 71-95
  • 41 Kuruvilla S, Adenaw N, Katwal AB et al. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging 2014; 7: 250-258
  • 42 Saba L, Fellini F, De Filippo M. Diagnostic value of contrast-enhanced cardiac magnetic resonance in patients with acute coronary syndrome with normal coronary arteries. Jpn J Radiol 2015; 33: 410-417
  • 43 Roes SD, Kelle S, Kaandorp TA et al. Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. Am J Cardiol 2007; 100: 930-936
  • 44 Gerber BL, Rousseau MF, Ahn SA et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J Am Coll Cardiol 2012; 59: 825-835
  • 45 Bruder O, Wagner A, Jensen CJ et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2010; 56: 875-887
  • 46 Assomull RG, Prasad SK, Lyne J et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 2006; 48: 1977-1985
  • 47 Lehrke S, Lossnitzer D, Schob M et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 2011; 97: 727-732
  • 48 Friedrich MG, Sechtem U, Schulz-Menger J et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 2009; 53: 1475-1487
  • 49 Hundley WG, Bluemke DA, Finn JP et al. American College of Cardiology Foundation Task Force on Expert Consensus D. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation 2010; 121: 2462-2508
  • 50 Nagel E, Lehmkuhl HB, Bocksch W et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999; 99: 763-770
  • 51 Chiribiri A, Hautvast GL, Lockie T et al. Assessment of coronary artery stenosis severity and location: quantitative analysis of transmural perfusion gradients by high-resolution MRI versus FFR. JACC Cardiovasc Imaging 2013; 6: 600-609
  • 52 Schwitter J, Wacker CM, Wilke N et al. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J 2013; 34: 775-781
  • 53 Chung SY, Lee KY, Chun EJ et al. Comparison of stress perfusion MRI and SPECT for detection of myocardial ischemia in patients with angiographically proven three-vessel coronary artery disease. AJR Am J Roentgenol 2010; 195: 356-362
  • 54 Chen MY, Bandettini WP, Shanbhag SM et al. Concordance and diagnostic accuracy of vasodilator stress cardiac MRI and 320-detector row coronary CTA. Int J Cardiovasc Imaging 2014; 30: 109-119
  • 55 Bamberg F, Abbara S, Schlett CL et al. Predictors of image quality of coronary computed tomography in the acute care setting of patients with chest pain. Eur J Radiol 2010; 74: 182-188