Ultraschall Med 2016; 37(05): 509-515
DOI: 10.1055/s-0034-1385282
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Ultrasound Strain Relaxation Time Ratio: A Quantitative Marker for the Assessment of Cortical Inflammation/Edema in Renal Allografts

Quotient der Ultraschall-Strain-Relaxationszeit: Ein quantitativer Marker für die Bewertung von kortikaler Inflammation/Ödem bei Nierenallotransplantaten
J. Gao
,
K. Hentel
,
J. Kazam
,
R. Min
Further Information

Publication History

22 March 2014

08 August 2014

Publication Date:
07 August 2015 (online)

Abstract

Purpose: To evaluate the ability of ultrasound strain relaxation time ratio to assess cortical inflammation/edema in renal allografts.

Materials and Methods: We prospectively assessed renal allograft cortical inflammation/edema in 16 renal transplants using ultrasound elasticity imaging and correlated the findings with kidney biopsy. Strain relaxation times in the renal cortex and reference soft tissue were produced by free-hand compression with the ultrasound transducer and estimated with 2 D speckle tracking. Compression was performed in 3-second compression-relaxation cycles (push for 1 second, constant pressure for 1 second, and release for 1 second). We propose a strain relaxation time ratio (time of cortical strain to return to zero/time of the reference strain return to zero) to assess the relationship of compression-induced time-dependent strain relaxation in the cortex and reference tissue. 16 patients were divided into a group with ≤ 25 % (n = 8) and a group with > 26 % (n = 8) cortical inflammation/edema based on the Banff score. A t-test was used to examine the difference in the strain relaxation time ratio between the two groups. The diagnostic accuracy, inter-rater reliability, and reproducibility of this technique in discriminating between the groups were tested.

Results: The strain relaxation time ratio of cortex/reference tissue was significantly higher in patients with > 26 % than in patients with ≤ 25 % cortical inflammation/edema (1.15 ± 0.10 vs. 0.91 ± 0.08, P = 0.0002). The strain relaxation time ratio has high reliability (Pearson correlation coefficient, R² = 0.93), reproducibility (intraclass correlation coefficient = 0.98, P = 0.000), and accuracy (area under curve = 1) in determining > 26 % renal cortical inflammation/edema.

Conclusion: The strain relaxation time ratio of cortex/reference tissue can be used as a quantitative marker for the assessment of cortical inflammation/edema in renal allografts.

Zusammenfassung

Ziel: Kann der Ultraschall-Strain-Relaxationszeit-Quotient kortikale Inflammation/Ödem bei Nierenallotransplantaten bestimmen?

Material und Methoden: Wir bewerteten prospektiv kortikale Inflammation/Ödem bei 16 Nierenallotransplantaten mittels Ultraschallelastrografie und verglichen die Befunde mit der Nierenbiopsie. Strain-Relaxationszeiten der Nierenrinde und der Weichteile als Referenz wurden durch Freihandkompression mit dem Ultraschallkopf erzeugt und mit 2-D-Speckle-Tracking bestimmt. Die Kompression wurde in 3-sekündigen Kompressions-Relaxations-Zyklen durchgeführt (Push 1 Sek., konstanter Druck 1 Sek. und Release 1 Sek. lang). Wir schlagen vor, den Strain-Relaxationszeit-Quotienten (Zeit des kortikalen Strains bis zur Nullrückkehr/Zeit des Referenzstrains bis zur Nullrückkehr) in Beziehung zu kompressionsinduzierter zeitabhängiger Strain-Relaxation in Rinde und Referenzgewebe zu bewerten. 16 Patienten wurden auf Basis der Banff-Klassifikation in eine Gruppe mit ≤ 25 % (n = 8) kortikaler Inflammation/Ödem und eine weitere mit > 26 % (n = 8) eingeteilt. Um den Unterschied der Strain-Relaxationszeit-Quotienten beider Gruppen zu ermitteln wurde der t-Test angewandt. Die diagnostische Genauigkeit, Interrater-Reliabilität und Reproduzierbarkeit wurden untersucht.

Ergebnisse: Der Strain-Relaxationszeit-Quotient von Rinden- zu Referenzgewebe war bei Patienten mit kortikaler Inflammation/Ödem > 26 % im Vergleich zu denen ≤ 25 % signifikant erhöht (1,15 ± 0,10 vs. 0,91 ± 0,08, p = 0,0002). Der Strain-Relaxationszeit-Quotient hat eine hohe Verlässlichkeit (Pearson’s Korrelationskoeffizient, R² = 0,93), hohe Reproduzierbarkeit (Intraklasse-Korrelationskoeffizient = 0,98; p = 0,000) und große Genauigkeit bei der Festlegung von > 26 % Inflammation/Ödem.

Schlussfolgerung: Der Strain-Relaxationszeit-Quotient von Rinden- zu Referenzgewebe kann als quantitativer Marker für die Bewertung kortikaler Inflammation/Ödem bei renalen Allotransplantaten eingesetzt werden.

 
  • Reference

  • 1 Gao J, Weitzel W, Rubin JM et al. Renal transplant elasticity ultrasound imaging: Correlation between normalized strain and renal cortical fibrosis. Ultrasound in Med. & Biol 2013; 39: 1536-1542
  • 2 Gao J, Min R, Hamilton J et al. Corticomedullary strain ratio: A quantitative marker in assessment of renal cortical fibrosis. J Ultarsound Med 2013; 32: 1769-1775
  • 3 Hertig A, Flier SN, Kalluri R. Contribution of epithelial plasticity to renal transplantation associated fibrosis. Transplantation proceedings 2010; 42: S7-S12
  • 4 Schwarz A, Gwinner W, Hiss M et al. Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 2005; 5: 1992-1996
  • 5 Gao J, Rubin J, Xiang D et al. Doppler parameters in renal transplant dysfunction: Correlations with histopathologic changes. J Ultrasound Med 2011; 30: 169-175
  • 6 Berry GP, Bamber JC, Armstrong CG et al. Towards an acoustic model-based poroelastic imaging method: I. theoretical foundation. Ultrasound in Med. & Biol 2006; 32: 547-567
  • 7 Rubin JM, Carson PL, Meyer CR. Anisotropic ultrasound backscatter from the renal cortex. Ultrasound Med Biol 1988; 14: 507-511
  • 8 Gennisson JL, Grenier N, Combe C et al. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound in Med & Biol 2012; 38: 1559-1567
  • 9 Emelianov SY, Lubinski M, Skovodora A et al. Reconstructive ultrasound elasticity imaging for renal transplant diagnosis: Kidney ex vivo results. Ultrasound Imaging 2000; 22: 178-194
  • 10 Ozkan F, Yavuz YC, Inci MF et al. Interobserver variability of ultrasound elastography in transplant kidneys: Correlations with clinical-Doppler parameters. Ultrsound in Med & Biol 2013; 39: 4-9
  • 11 Stock KF, Klein BS, Vo CongMT et al. ARFI-based tissue elasticity quantification and kidney graft dysfunction: First clinical experiences. Clinical Hemorheology and Microcirc 2011; 49: 527-535
  • 12 Perrinez PR, Pattison AJ, Kennedy FE. Contrast detection in fluid-saturated media with magnetic resonance poroelastography. Med. Phys 2010; 37: 3518-3526
  • 13 Hueper K, Rong S, Gutberlet M et al. T2 relaxation time and apparent diffusion coefficient for noninvasively assessment of renal pathology after acute kidney injury in mice: comparison with histopathlogy. Invest Radiol 2013; 48: 834-842
  • 14 Leiderman R, Barbone PE, Oberai AA et al. Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging. Phys. Med. Biol 2006; 51: 6291-313
  • 15 Berry GP, Bamber JC, Mortimer PS et al. The spatio- temporal strain response of oedematous and nonoedematous tissue to sustained compression in vivo. Ultrasound in Med. & Biol 2008; 34: 617-622
  • 16 Stridh S, Palm F, Hansell P. Renal interstitial hyaluronan: functional aspects during normal and pathological conditions. Am J Physiol Regul Integt Comp Physiol 2012; 302: R1235-R1249
  • 17 Solez K, Colvin RB, Racusen LC et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant 2008; 8: 753-760
  • 18 Hosseini SM, Wilson W, Ito K et al. How preconditioning affect the measurement of poro-viscoelastic mechanical property in biological tissue. Biomech Model Mechanobiol 2013; online-publication DOI: 10.1007/s10237-013-0511-2.
  • 19 Xu J, Tripathy S, Rubin JM et al. A new nonlinear parameter in the developed strain-toapplied strain of the soft tissue and its application in ultrasound elasticity imaging. Ultrasound Med Biol 2012; 38: 511-523
  • 20 Kallel F, Ophir J, Maguee K et al. Quantitative imaging of low contrast elastic modulus distribution in tissues using elastography. In: Proceedings, 1997 IEEE Ultrasonics Symposium, Toronto, ON, October 5–8, 1997: 1439-1442
  • 21 Emelianov SY, Erkamp RQ, Lubinski MA et al. Non-linear tissue elasticity: Adaptive elasticity imaging for large deformations. In: Proceedings, 1998 IEEE Ultrasonics Symposium, Sendai, Japan, October 5–8, 1998: 1753-1756
  • 22 Lubinski MA, Emelianov SY, O’Donnell M. Speckle tracking methods for ultrasound elasticity imaging using short time correlation. IEEE Trans., Ferroelct., Freq. Contr 1999; 46: 82-96
  • 23 Sridhar M, Pellot-Barakat C, Insana MF. Ultrasound mechanical relaxation imaging. 2003 IEEE Ultrasonics Symposium. 03CH37476C 923-932
  • 24 Konofagou EE, Harrigan TP, Ophir J et al. Poroelastography: imaging the poroelastic properties of tissue. Ultrasound in Med. & Biol 2001; 27: 1387-1397
  • 25 Righetti R, Righetti M, Ophir J et al. The feasibility of estimating and imaging the mechanical behavior of poroelastic material using axial strain elastography. Physics in medicine and biology 2007; 52: 3241-3259
  • 26 Kolias T, Hagan PG, Chetcuti SJ et al. New universal strain software accurately assesses cardiac systolic and diastolic function using speckle tracking echocardiography. Echocardiography 2014; DOI: 10.1111/echo.12512.