Zeitschrift für Orthomolekulare Medizin 2014; 12(4): 5-10
DOI: 10.1055/s-0034-1383249
Wissen
Hippokrates Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG Stuttgart · New York

Gehirndoping mit Vitaminen und anderen Mikronährstoffen?

Uwe Gröber
,
Klaus Kisters
,
Joachim Schmidt
Further Information

Publication History

Publication Date:
18 December 2014 (online)

Zusammenfassung

Mikronährstoffe wie Vitamin D, B-Vitamine, Antioxidanzien, ω-3-Fettsäuren und Eisen sind essenziell für Hirnentwicklung und kognitive Leistungsfähigkeit von Kindern und Jugendlichen. Der Vergleich von Verzehrsdaten und Zufuhrempfehlungen zeigt ebenso wie Blutanalysen, dass die Versorgung mit gehirnaktiven Nährstoffen oft unzureichend ist.

Literaturverzeichnis als PDF

 
  • Literatur

  • 1 Gruber K. Im Blickpunkt: Symposium „Kinderernährung – Mythen versus Wissenschaft“. Journal für Ernährungsmedizin 2011; 13 (4) 6-10
  • 2 Diethelm K, Jankovic N, Moreno LA et al. Food intake of european adolescents in the light of different food-based dietary guidelines: results of the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr 2012; 15 (3) 386-398
  • 3 Alexy U, Clausen K, Kersting M. Die Ernährung gesunder Kinder und Jugendlicher nach dem Konzept der Optimierten Mischkost. Ernährungs Umschau 2008; 3: 168-176
  • 4 Yau PL, Castro MG, Tagani A et al. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics 2012; 130 (4) e856-e864 DOI: 10.1542/peds.2012-0324.
  • 5 Beiner J. Jugendliche verzehren mehr Alkohol als Gemüse. Die Welt online, 20.07.2011 –. http://www.welt.de
  • 6 Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc 2013; 88 (7) 720-755
  • 7 Gröber U, Spitz J, Reichrath J et al. Vitamin D. Update 2013. From rickets prophylaxis to general healthcare. Dermatoendocrinol 2013; 5 (3) 331-347
  • 8 Lehtonen-Veromaa MK, Mottonen TT, Nuotio IO et al. Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr 2002; 76 (6) 1446-1453
  • 9 Cheng S, Tylavsky F, Kroger H et al. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 2003; 78 (3) 485-492
  • 10 Cashman KD, Hill TR, Cotter AA et al. Low vitamin D status adversely affects bone health parameters in adolescents. Am J Clin Nutr 2008; 87 (4) 1039-1044
  • 11 Hochberg Z, Bereket A, Davenport M et al. Consensus development for the supplementation of vitamin D in childhood and adolescence. Horm Res 2002; 58 (1) 39-51
  • 12 Goulding A, Cannan R, Williams SM et al. Bone mineral density in girls with forearm fractures. J Bone Miner Res 1998; 13 (1) 143-148
  • 13 Stránský M, Rysavá L. Nutrition as prevention and treatment of osteoporosis. Physiol Res 2009; 58 (Suppl. 01) S7-S11
  • 14 Hyppönen E, Läärä E, Reunanen A et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001; 358 (9292) 1500-1503
  • 15 Kampman MT, Wilsgaard T, Mellgren SI. Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. J Neurol 2007; 254 (4) 471-477
  • 16 Holick MF. The D-lightful vitamin D for child health. JPEN J Parenter Enteral Nutr 2012; 36(1 Suppl): 9S-19S
  • 17 Thierfelder W, Dortschy R, Hintzpeter B et al. Biochemical measures in the german health interview and examination survey for children and adolescents (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2007; 50(5–6): 757-770
  • 18 Max Rubner-Institut Hrsg. Nationale Verzehrsstudie II, Ergebnisbericht Teil 2. Bundesforschungsinstitut für Ernährung und Lebensmittel 2008.
  • 19 González-Gross M, Valtueña J, Breidenassel C et al. Vitamin D status among adolescents in Europe: the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br J Nutr 2012; 107 (5) 755-764
  • 20 Stonehouse W. Does consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials. Nutrients 2014; 6 (7) 2730-2758
  • 21 Vyncke KE, Libuda L, De Vriendt T et al. Dietary fatty acid intake, its food sources and determinants in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Br J Nutr 2012; 108 (12) 2261-2273
  • 22 Kretchmer N, Beard JL, Carlson S. The role of nutrition in the development of normal cognition. Am J Clin Nutr 1996; 63 (6) 997S-1001S
  • 23 Vinas BR, Barba LR, Ngo J et al. Projected prevalence of inadequate nutrient intakes in Europe. Ann Nutr Metab 2011; 59(2–4): 84-95
  • 24 Grantham-McGregor S, Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 2001; 131 (Suppl. 22) 649S-666S
  • 25 de Silva A, Atukorala S, Weerasinghe I et al. Iron supplementation improves iron status and reduces morbidity in children with or without upper respiratory tract infections: a randomized controlled study in Colombo, Sri Lanka. Am J Clin Nutr 2003; 77 (1) 234-241
  • 26 Sachdev H, Gera T, Nestel P. Effect of iron supplementation on mental and motor development in children: systematic review of randomised controlled trials. Public Health Nutr 2005; 8 (2) 117-132
  • 27 Brutsaert TD, Hernandez-Cordero S, Rivera J et al. Iron supplementation improves progressive fatigue resistance during dynamic knee extension exercise in iron-depeleted, nonanemic women. Am J Clin Nutr 2003; 77 (2) 441-448
  • 28 Cavalli-Sforza T, Berger J, Smitasiri S, Viteri F. Weekly iron-folic acid supplementation of women of reproductive age: impact overview, lessons learned, expansion plans, and contributions toward achievement of the millennium development goals. Nutr Rev 2005; 63 (12 Pt2) S152-S158
  • 29 Gracia-Marco L, Valtueña J, Ortega FB et al. Iron and vitamin status biomarkers and its association with physical fitness in adolescents: the HELENA study. J Appl Physiol (1985) 2012; 113 (4) 566-573
  • 30 Ferrari M, Mistura L, Patterson E et al. Evaluation of iron status in European adolescents through biochemical iron indicators: the HELENA Study. Eur J Clin Nutr 2011; 65 (3) 340-349
  • 31 Gröber U. Mikronährstoffe. Metabolic Tuning – Prävention – Therapie. 3.. Aufl. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2011
  • 32 González-Gross M, Benser J et al. Gender and age influence blood folate, vitamin B12, vitamin B6, and homocysteine levels in European adolescents: the Helena Study. Nutr Res 2012; 32 (11) 817-826
  • 33 Gröber U, Kisters K, Schmidt J. Neuroenhancement with Vitamin B12: Underestimated neurological significance. Nutrients 2013; 5 (12) 5031-5045
  • 34 Rajagopalan P, Hua X, Toga AW et al. Homocysteine effects on brain volumes mapped in 732 elderly individuals. Neuroreport 2011; 22 (8) 391-395
  • 35 Moore E, Mander A, Ames D et al. Cognitive impairment and vitamin B12: a review. Int Psychogeriatr 2012; 24 (4) 541-556
  • 36 Smith AD, Smith SM, de Jager CA et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One 2010; 5: e12244
  • 37 de Jager CA, Oulhaj A, Jacoby R et al. Cognitive and clinical outcomes of homocysteine-lowering B vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry 2012; 27 (6) 592-600
  • 38 Cheng D, Kong H, Pang W et al. B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia. Nutr Neurosci 2014; Jun 18 [Epub ahead of print]
  • 39 Wald DS, Kasturiratne A, Simmonds M. Serum homocysteine and dementia: meta-analysis of eight cohort studies including 8669 participants. Alzheimers Dement 2011; 7 (4) 412-417
  • 40 Osganian SK, Stampfer MJ, Spiegelman D et al. Distribution of and factors associated with serum homocysteine levels in children: Child and Adolescent Trial for Cardiovascular Health. JAMA 1999; 281 (13) 1189-1196
  • 41 Shen M-H, Chu N-F, Wu D-M et al. Plasma homocysteine, folate and vitamin B12 levels among school children in Taiwan: The Taipei Children Heart Study. Clin Biochem 2002; 35 (6) 495-498
  • 42 Huemer M, Vonblon K, Fodinger M et al. Total homocysteine, folate, and cobalamin, and their relation to genetic polymorphisms, lifestyle and body mass index in healthy children and adolescents. Pediatr Res 2006; 60 (6) 764-769
  • 43 Narin F, Atabek ME, Karakukcu M et al. The association of plasma homocysteine levels with serum leptin and apolipoprotein B levels in childhood obesity. Ann Saudi Med 2005; 25 (3) 209-214
  • 44 Rauh-Pfeiffer A, Handel U, Demmelmair H et al. Three-month B vitamin supplementation in pre-school children affects folate status and homocysteine, but not cognitive performance. Eur J Nutr 2014; 53 (7) 1445-1456
  • 45 Aytan N, Jung T, Tamturk F et al. Oxidative stress related changes in the brain of hypercholesterolemic rabbits. Biofactors 2008; 33: 225-236
  • 46 Sen CK, Khanna S, Roy S. Tocotrienols: Vitamin E beyond tocopherols. Life Sci 2006; 78: 2088-2098
  • 47 Breidenassel C, Valtueña J, González-Gross M et al. Antioxidant vitamin status (A, E, C, and beta-carotene) in European adolescents – the HELENA Study. Int J Vitam Nutr Res 2011; 81 (4) 245-255
  • 48 Biesalski K. Antioxidative Vitamine in der Prävention. Deutsches Ärzteblatt 1995; 92: A1316-A1321
  • 49 Levine M, Conry-Cantilena C, Wang Y et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci USA 1996; 93 (8) 3704-3709
  • 50 Frei B, Birlouez-Aragon I, Lykkesfeldt J. Authorsʼ perspective: What is the optimum intake of vitamin C in humans?. Crit Rev Food Sci Nutr 2012; 52 (9) 815-829
  • 51 Péneau S, Galan P, Jeandel C et al. Fruit and vegetable intake and cognitive function in the SU.VI.MAX 2 prospective study. Am J Clin Nutr 2011; 94 (5) 1295-1303
  • 52 Aparicio Vizuete A, Robles F, Rodríguez-Rodríguez E et al. Association between food and nutrient intakes and cognitive capacity in a group of institutionalized elderly people. Eur J Nutr 2010; 49 (5) 293-300
  • 53 Snowden W. Evidence from an analysis of 2000 errors and omissions made in IQ tests by a small sample of schoolchildren, undergoing vitamin and mineral supplementation, that speed of processing is an important factor in IQ performance. Pers Individ Dif 1997; 22 (1) 131-134
  • 54 Schoenthaler SJ, Amos SP, Eysenck HJ et al. Controlled trial of vitamin-mineral supplementation: effects on intelligence and performance. Pers Individ Dif 1991; 12: 351-362
  • 55 Schoenthaler SJ, Bier ID, Young K et al. The effect of vitamin-mineral supplementation on the intelligence of American schoolchildren: a randomized, double-blind placebo-controlled trial. J Altern Complement Med 2000; 6 (1) 19-29
  • 56 Osendarp SJ, Baghurst KI, Bryan J et al. Effect of a 12-mo micronutrient intervention on learning and memory in well-nourished and marginally nourished school-aged children: 2 parallel, randomized, placebo-controlled studies in Australia and Indonesia. Am J Clin Nutr 2007; 86 (4) 1082-1093
  • 57 Manger MS, McKenzie JE, Winichagoon P et al. A micronutrient-fortified seasoning powder reduces morbidity and improves short-term cognitive function, but has no effect on anthropometric measures in primary school children in northeast Thailand: a randomized controlled trial. Am J Clin Nutr 2008; 87 (6) 1715-1722
  • 58 Benton D, Buts JP. Vitamin/mineral supplementation and intelligence. Lancet 1990; 335 (8698) 1158-1160
  • 59 Eilander A, Gera T, Sachdev HS et al. Multiple micronutrient supplementation for improving cognitive performance in children: systematic review of randomized controlled trials. Am J Clin Nutr 2010; 91 (1) 115-130