Synlett 2015; 26(13): 1823-1826
DOI: 10.1055/s-0034-1381007
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of N-Monosubstituted Ureas from Nitriles via Tiemann Rearrangement

Chien-Hong Wang
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Tsung-Han Hsieh
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Chia-Chi Lin
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Wen-Hsiung Yeh
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Chih-An Lin
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Tun-Cheng Chien*
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 19 April 2015

Accepted after revision: 26 May 2015

Publication Date:
20 July 2015 (online)


Abstract

Amidoximes, obtained from the reaction of nitriles with hydroxylamine, underwent Tiemann rearrangement in the presence of benzenesulfonyl chlorides (TsCl or o-NsCl) to form the N-substituted cyanamides. Subsequently, acidic hydrolysis of the cyanamides afforded the corresponding N-monosubstituted ureas. The synthesis of N-monosubstituted ureas from nitriles was accomplished by three steps in one pot, which provides a direct access to versatile N-monosubstituted urea derivatives from a wide variety of nitriles.

Supporting Information

 
  • References and Notes

  • 2 McKay MJ, Nguyen HM. Carbohydr. Res. 2014; 385: 18
  • 5 Belfrage AK, Gising J, Svensson F, Åkerblom E, Sköld C, Sandström A. Eur. J. Org. Chem. 2015; 978
  • 6 Gong H, Yang M, Xiao Z, Doweyko AM, Cunningham M, Wang J, Habte S, Holloway D, Burke C, Shuster D, Gao L, Carman J, Somerville JE, Nadler SG, Salter-Cid L, Barrish JC, Weinstein DS. Bioorg. Med. Chem. Lett. 2014; 24: 3268
    • 7a Lin W.-H, Hsu JT. A, Hsieh S.-Y, Chen C.-T, Song J.-S, Yen S.-C, Hsu T, Lu C.-T, Chen C.-H, Chou L.-H, Yang Y.-N, Chiu C.-H, Chen C.-P, Tseng Y.-J, Yen K.-J, Yeh C.-F, Chao Y.-S, Yeh T.-K, Jiaang W.-T. Bioorg. Med. Chem. 2013; 21: 2856
    • 7b Li H.-F, Lu T, Zhu T, Jiang Y.-J, Rao S.-S, Hu L.-Y, Xin B.-T, Chen Y.-D. Eur. J. Med. Chem. 2009; 44: 1240
    • 7c Michaux C, Dogné J.-M, Rolin S, Masereel B, Wouters J, Durant F. Eur. J. Med. Chem. 2003; 38: 703
  • 8 Tuerp D, Bruchmann B. Macromol. Rapid Commun. 2015; 36: 138
  • 12 Curtis N. Aust. J. Chem. 1988; 41: 585
  • 13 Breitler S, Oldenhuis NJ, Fors BP, Buchwald SL. Org. Lett. 2011; 13: 3262
  • 20 Partridge MW, Turner HA. J. Pharm. Pharmacol. 1953; 5: 103
    • 21a Bakunov SA, Rukavishnikov AV, Tkachev AV. Synthesis 2000; 1148
    • 21b Bakunov SA, Rukavishnikov AV, Tkachev AV. Synthesis 1994; 935
  • 22 Ulrich H, Tucker B, Richter R. J. Org. Chem. 1978; 43: 1544
  • 24 Lin C.-C, Hsieh T.-H, Liao P.-Y, Liao Z.-Y, Chang C.-W, Shih Y.-C, Yeh W.-H, Chien T.-C. Org. Lett. 2014; 16: 892
  • 25 General Procedure for the One-Pot Synthesis of N-Monosubstituted Urea 4 from Nitrile 1 (Scheme 3) To the solution of nitrile 1 in EtOH (0.1 M) was added 50 wt% aq hydroxylamine solution (1.2 equiv). The mixture was stirred at reflux temperature for 1.5 h. After cooling to r.t., the reaction mixture was concentrated under reduced pressure. The crude amidoxime product 2 was dissolved in CH2Cl2 (0.1 M), and ArSO2Cl (TsCl or o-NsCl, 1.05 equiv) and DIPEA (1.05 equiv) were added at 0 °C. The mixture was stirred under nitrogen atmosphere at r.t. for 3 h or at reflux temperature for 1 h.24 The mixture was concentrated under reduced pressure. The crude cyanamide product 3 was dissolved in the mixture of 1 N aq HCl solution and EtOH (0.1 M, 1 N HCl–EtOH = 1:4, v/v). The mixture was stirred at reflux temperature for 3 h under nitrogen. After cooling to r.t. the reaction mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography.
  • 26 Analytical Data of Compounds 4e–k
    N-(4-Nitrophenyl)urea (4e)
    Mp 213–215 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 9.29 (s, 1 H, NH), 8.11 (d, 2 H, J = 9.2 Hz), 7.62 (d, 2 H, J = 9.2 Hz), 6.20 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.4, 147.3, 140.5, 125.1 (CH), 117.0 (CH). MS (EI, 20 eV): m/z = 108 (56), 138 (100), 181 (40) [M+]. ESI-MS: m/z = 167 (100), 182 (73) [M + 1]. HRMS (EI): m/z calcd for C7H7N3O3: 181.0487; found: 181.0486. N-(4-Trifluoromethylphenyl)urea (4f) Mp 144–145 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.95 (s, 1 H, NH), 7.60 (d, 2 H, J = 8.7 Hz), 7.54 (d, 2 H, J = 8.7 Hz), 6.04 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.7, 144.3, 125.9 (q, J = 3.0 Hz, CH), 124.6 (q, J = 270.0 Hz, CF3), 121.1 (q, J = 32.0 Hz), 117.4 (CH). MS (EI, 20 eV): m/z = 161 (100), 204 (41) [M+]. ESI-MS: m/z = 205 (100) [M + 1]. HRMS (EI): m/z calcd for C8H7F3N2O: 204.0510; found: 204.0508. N-(3-Methoxyphenyl)urea (4g) Mp 128–130 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.51 (s, 1 H, NH), 7.08–7.12 (m, 2 H), 6.87 (d, 1 H, J = 7.9 Hz), 6.47 (d, 1 H, J = 8.0 Hz), 5.81 (s, 2 H, NH2), 3.69 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 159.7, 156.0, 141.8, 129.4 (CH), 110.2 (CH), 106.5 (CH), 103.6 (CH), 54.9 (CH). ESI-MS: m/z = 167 [M + 1]. HRMS (EI): m/z calcd for C8H10N2O2: 166.0742; found: 166.0741. N-(2-Methylphenyl)urea (4h) Mp 194–196 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 7.77 (d, 1 H, J = 8.0 Hz), 7.66 (s, 1 H, NH), 7.12–7.06 (m, 2 H), 6.87 (t, 1 H, J = 7.3), 6.00 (s, 2 H, NH2), 2.18 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 156.1, 138.2, 130.0 (CH), 127.0 (CH), 126.0, 123.0 (CH), 120.9 (CH), 17.9 (CH3). MS (EI, 20 eV): m/z = 107 (100), 150 (62) [M+]. HRMS (EI): m/z calcd for C8H10N2O: 150.0793; found: 150.0792. N-(2-Chlorophenyl)urea (4i) Mp 190–192 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.12 (dd, 1 H, J = 8.4, 1.3 Hz), 8.03 (s, 1 H, NH), 7.38 (dd, 1 H, J = 8.3, 0.9 Hz), 7.24–7.20 (m, 1 H), 6.96–6.92 (m, 1 H), 6.37 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.6, 136.7, 129.0, 127.4, 122.5, 121.4, 121.1. MS (EI, 20 eV): m/z = 127 (100), 129 (30), 135 (40), 170 (18) [M+], 172 (8) [M + 2]. HRMS (EI): m/z calcd for C7H7ClN2O: 170.0247; found: 170.0246. 1,3-Dimethyl-5-ureidouracil (4j) Mp 254–258 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.09 (s, 1 H, NH), 7.84 (s, 1 H), 6.26 (s, 2 H, NH2), 3.29 (s, 3 H, CH3), 3.20 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 160.2, 156.5, 149.8, 128.5, 115.0, 70.2, 37.1, 28.4. MS (EI, 20 eV): m/z = 70 (42), 155 (100), 198 (10) [M+]. HRMS (EI): m/z calcd for C7H10N4O3: 198.0753; found: 198.0760. 2-Chloro-3-ureidopyridine (4k) Mp 210–212 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.50 (dd, 1 H, J = 8.2, 1.5 Hz), 8.19 (s, 1 H, NH), 7.96 (dd, 1 H, J = 4.5, 1.5 Hz), 7.32 (dd, 1 H, J = 8.2, 4.6 Hz), 6.52 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.4, 141.5 (CH), 138.5, 133.9, 128.3 (CH), 123.3 (CH). ESI-MS: m/z = 155 (28), 172 (100) [M + 1]. HRMS (EI): m/z calcd for C6H6ClN3O: 171.0199; found: 171.0201.