Synlett 2015; 26(13): 1857-1861
DOI: 10.1055/s-0034-1380742
letter
© Georg Thieme Verlag Stuttgart · New York

A Green and Facile Synthesis of Biopertinent Pyrazole-Decorated Nitriles and Acrylates under Catalyst-Free Conditions

Lakshmi Narayanan Jayalakshmi
Centre for Nanotechnology/Department of Chemistry, Kalasalingam University, Krishnankoil – 626 126, Tamilnadu, India   Email: ramalinganc@gmail.com
,
Kesavan Stalindurai
Centre for Nanotechnology/Department of Chemistry, Kalasalingam University, Krishnankoil – 626 126, Tamilnadu, India   Email: ramalinganc@gmail.com
,
Ayyanar Karuppasamy
Centre for Nanotechnology/Department of Chemistry, Kalasalingam University, Krishnankoil – 626 126, Tamilnadu, India   Email: ramalinganc@gmail.com
,
Ramar Sivaramakarthikeyan
Centre for Nanotechnology/Department of Chemistry, Kalasalingam University, Krishnankoil – 626 126, Tamilnadu, India   Email: ramalinganc@gmail.com
,
Vellasamy Devadoss
Centre for Nanotechnology/Department of Chemistry, Kalasalingam University, Krishnankoil – 626 126, Tamilnadu, India   Email: ramalinganc@gmail.com
,
Chennan Ramalingan*
Centre for Nanotechnology/Department of Chemistry, Kalasalingam University, Krishnankoil – 626 126, Tamilnadu, India   Email: ramalinganc@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 17 March 2015

Accepted after revision: 14 April 2015

Publication Date:
21 May 2015 (online)


Abstract

A green and efficient methodology has been developed for the construction of 2-[(1,3-diaryl-4-pyrazolyl)methylene]malononitriles, potent antioxidant molecules, in good to excellent yields in five minutes from 1,3-diarylpyrazole-4-carbaldehydes and malononitrile using PEG-400 and water at ambient temperature under catalyst-free conditions. The PEG-400 could be reused without appreciable loss in the yield. The methodology has been extended to the synthesis of a diverse range of homo/heteroaryl-based nitriles and acrylates, reflecting its versatility.

Supporting Information

 
  • References and Notes

    • 1a Küçükgüzel ŞG, Şenkardeş S. Eur. J. Med. Chem. 2014; in press; DOI: 10.1016/j.ejmech.2014.11.059
    • 1b Fustero S, Sanchez-Rosello M, Barrio P, Simon-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 2a Ramalingan C, Takenaka K, Sasai H. Tetrahedron 2011; 67: 2889
    • 2b Ramalingan C, Park S.-J, Lee I.-S, Kwak Y.-W. Tetrahedron 2010; 66: 2987
    • 2c Ramalingan C, Park Y.-T. J. Org. Chem. 2007; 72: 4536
    • 3a Jones G In Organic Reactions . Vol. 15. Wiley; New York: 1967: 204
    • 3b Tietze LF, Beifuss U In Comprehensive Organic Synthesis . Vol. 2. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 341
    • 4a Saravanamurugan S, Palanichamy M, Hartmann M, Murugesan V. Appl. Catal., A 2006; 298: 8
    • 4b Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A. J. Catal. 2010; 269: 110
    • 4c Malakooti R, Mahmoudi H, Hosseinabadi R, Petrov S, Migliori A. RSC Adv. 2013; 3: 22353
    • 4d Ranu BC, Jana R. Eur. J. Org. Chem. 2006; 3767
    • 4e Zhao J, Xie J, Au C.-T, Yin S.-F. Appl. Catal., A 2013; 467: 33
    • 5a Zhao S, Chen Y, Song Y.-F. Appl. Catal., A 2014; 475: 140
    • 5b Islam SM, Roy AS, Dey RC, Paul S. J. Mol. Catal. A: Chem. 2014; 394: 66
    • 5c Yang Y, Yao H.-F, Xi F.-G, Gao E.-Q. J. Mol. Catal. A: Chem. 2014; 390: 198
    • 5d Thakur A, Tripathi M, Rajesh UC, Rawat DS. RSC Adv. 2013; 3: 18142
    • 6a Rong L, Li X, Wang H, Shi D, Tu S, Zhuang Q. Synth. Commun. 2006; 36: 2407
    • 6b Dong X, Hui Y, Xie S, Zhang P, Zhou G, Xie Z. RSC Adv. 2013; 3: 3222
    • 6c Trotzki R, Hoffman MM, Ondruschka B. Green Chem. 2008; 10: 767
    • 6d Pratap UR, Jawale DV, Waghmare RA, Lingampalle DL, Mane RA. New J. Chem. 2011; 35: 49
    • 7a Murase T, Nishijima Y, Fujita M. J. Am. Chem. Soc. 2012; 134: 162
    • 7b Jia GL, Zhang W. Green Chem. 2012; 14: 2234
    • 8a Albertsson PA. Partition of Cell Particles and Macromolecules . Wiley; New York: 1986. 3rd ed.
    • 8b Chen J, Spear SK, Huddleston JG, Holbrey JH, Swatloski RP, Rogers RD. Ind. Eng. Chem. Res. 2004; 43: 5358
    • 8c Chen J, Spear SK, Huddleston JG, Holbrey JH, Rogers RD. J. Chromatogr. B: Biomed. Sci. Appl. 2004; 807: 145
    • 8d Harris JM In Polyethylene Glycol Chemistry, Biotechnical and Biomedical Applications . Harris JM. Plenum Press; New York/London: 1992: 7
  • 9 Typical Experimental Procedure An equimolar quantity of 3-(4-bromophenyl)-1-phenylpyrazolecarbaldehyde (1.0 mmol) and malononitrile (1.0 mmol) was stirred in polyethylene glycol (PEG-400)–H2O (3:1) mixture at ambient temperature for 5 min when a solid was obtained. H2O was then added, and the mixture was filtered and dried under reduced pressure to give 2-{[3-(4-bromophenyl)-1-phenylpyrazolyl]methylene}malononitrile (1a). Recrystallization from an EtOH–DMF mixture afforded analytically pure product as a pale yellow solid; mp 199–200 °C. IR (KBr): ν = 2362.8, 2223.9, 1570.1, 1518.0, 1436.9, 1402.2, 1338.6, 1240.2, 1076.3, 1008.8, 974.1, 954.8, 831.2, 812.0, 754.2, 729.1, 705.9, 682.8, 630.7, 609.5 cm–1. 1H NMR (300 MHz, CDCl3): δ = 9.01 (s, 1 H), 7.74–7.63 (m, 5 H), 7.50–7.41 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 156.2, 151.3, 138.6, 132.5, 131.5, 130.2, 129.4, 128.9, 126.5, 123.9, 120.0, 115.0, 114.7, 114.0, 78.3. GC–MS: m/z = 374 [M+]. Anal. Calcd for C19H11BrN4: C, 60.82; H, 2.95; N, 14.93. Found: 60.85; H, 2.91; N, 14.91.
  • 10 Luo J, Xin T, Wang Y. New J. Chem. 2013; 37: 269
  • 11 Ye W, Jiang H, Yang X.-C. J. Chem. Sci. 2011; 123: 331
  • 12 Siddiqui ZN, Khan T. Tetrahedron Lett. 2013; 54: 3759
  • 13 Characterization Data of Representative Unsubstituted Nitrile 1f Pale yellow solid; mp 214–215 °C. IR (KBr): ν = 2357.0, 2223.9, 1581.6, 1521.8, 1502.6, 1469.8, 1448.5, 1344.4, 1238.3, 1184.3, 1018.4, 952.8, 821.7, 758.0, 715.6, 678.9, 611.4 cm–1. 1H NMR (300 MHz, CDCl3): δ = 9.06 (s, 1 H), 7.84–7.80 (m, 3 H), 7.58–7.52 (m, 7 H), 7.47–7.44 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 156.3, 151.0, 138.5, 130.6, 129.6, 129.5, 129.3, 129.1, 128.9, 119.9, 114.9, 113.8, 78.5. GC–MS: m/z = 296 [M+]. Anal. Calcd for C19H12N4: C, 77.01; H, 4.08; N, 18.91. Found: 77.05; H, 4.11; N, 18.88.
  • 14 Xu DZ. C, Liu Y, Shi S, Wang Y. Green Chem. 2010; 12: 514
  • 15 Balalaie S, Bararjanian M, Hekmat S, Salehi P. Synth. Commun. 2006; 36: 2549
  • 16 Characterization Data of Representative Acrylate 3a Off-white solid; mp 106–107 °C. IR (KBr): ν = 2987.7, 2218.1, 1726.3, 1643.4, 1593.2, 1519.9, 1429.3, 1373.3, 1267.2, 1236.4, 1190.1, 1093.6, 1020.3, 947.1, 887.3, 817.8, 721.2, 673.2, 578.6, 526.6 cm–1. 1H NMR (300 MHz, CDCl3): δ = 9.14 (s, 1 H), 8.24 (s, 1 H), 7.82 (d, J = 8.0 Hz, 2 H), 7.55–7.47 (m, 7 H), 7.41 (t, J = 6.9 Hz, 1 H), 4.37–4.32 (m, 2 H), 1.37 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 162.6, 155.1, 145.7, 138.8, 135.7, 130.4, 129.7, 129.4, 129.3, 128.3, 120.0, 116.6, 114.9, 100.2, 62.5, 14.2. MS: m/z = 377 [M+]. Anal. Calcd for C21H16ClN3O2: C, 66.76; H, 4.27; N, 11.12. Found: C, 66.85; H, 4.33; N, 11.01.