Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(11): 1461-1464
DOI: 10.1055/s-0034-1380715
DOI: 10.1055/s-0034-1380715
letter
Gold(I)-Catalyzed Domino Cyclization for the Synthesis of Tricyclic Chromones
Further Information
Publication History
Received: 07 March 2015
Accepted after revision: 14 April 2015
Publication Date:
03 June 2015 (online)
Abstract
A simple and efficient method for the synthesis of tricyclic chromones has been developed. In this approach, tricyclic chromones were synthesized from a diverse range of phenols and alkynes through a Sonogashira coupling and subsequent gold-catalyzed intramolecular domino cyclization.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380715.
- Supporting Information
-
References and Notes
- 1a Hepworth JD In Comprehensive Heterocyclic Chemistry . Vol. 3. Katritzky AR, Rees CW. Pergamon Press; Oxford: 1984: 835
- 1b Edwards AM, Howell JB. L. Clin. Exp. Allergy 2000; 30: 756
- 2 Detty MR. Organometallics 1988; 7: 2188
- 3 Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG. J. Am. Chem. Soc. 1994; 116: 4846
- 4 Martens S, Mithöfer A. Phytochemistry 2005; 66: 2399
- 5 Zhou T, Shi Q, Lee KH. Tetrahedron Lett. 2010; 51: 4382
- 6 Kuroda M, Uchida S, Watanabe K, Mimaki Y. Phytochemistry 2009; 70: 288
- 7 Gamal-Eldeen AM, Djemgou PC, Tchuendem M, Ngadjui BT, Tane P, Toshifumi H. Z. Naturforsch., C 2007; 62: 331
- 8 Borges ML, Matos OC, Pais I, Melo JS. D, Ricardo CP, MacAnita A, Becker RS. Pestic. Sci. 1995; 44: 155
- 9 Klymchenko AS, Pivovarenko VG, Ozturk T, Demchenko AP. New J. Chem. 2003; 27: 1336
- 10a Sonar AS, Dandale SG, Solanki PR. J. Chem. Pharm. Res. 2011; 3: 752
- 10b Wen L, Zhang H, Lin H, Shen Q, Lu L. J. Fluorine Chem. 2012; 133: 171
- 10c Vedachalam S, Zeng J, Gorityala BK, Antonio M, Liu X.-W. Org. Lett. 2010; 12: 352
- 10d Vedachalam S, Wong Q.-L, Maji B, Zeng J, Ma J, Liu X.-W. Adv. Synth. Catal. 2011; 353: 219
- 10e Devitt PF, Timoney A, Vickars MA. J. Org. Chem. 1961; 26: 4941
- 10f Lubbe M, Appel B, Flemming A, Fischer C, Langer P. Tetrahedron 2006; 62: 11755
- 11 Yeo JE, Yang XL, Kim HJ, Koo SH. Chem. Commun. 2004; 236
- 12 Hashmi AS. K. Gold Bull. 2003; 36: 3
- 13a Nieto-Oberhuber C, Muñoz MP, Buñuel E, Nevado C, Cárdenas DJ, Echavarren AM. Angew. Chem. Int. Ed. 2004; 43: 2402 ; Angew. Chem. 2004, 116, 2456
- 13b Nieto-Oberhuber C, Muñoz MP, López S, Jiménez-Núñnez E, Nevado C, Herrero-Gómez E, Raducan M, Echavarren AM. Chem. Eur. J. 2006; 12: 1677
- 13c Ferrer C, Raducan M, Nevado C, Claverie CK, Echavarren AM. Tetrahedron 2007; 63: 6306
- 13d Kaye S, Fox JM, Hicks FA, Buchwald SL. Adv. Synth. Catal. 2001; 343: 789
- 13e Walker SD, Barder TE, Martinelli JR, Buchwald SL. Angew. Chem. Int. Ed. 2004; 43: 1871 ; Angew. Chem. 2004, 116, 1907
- 13f Strieter ER, Blackmond DG, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 13978
- 13g Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
- 13h Barder TE, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 5096
- 13i Kirsch SF. Synthesis 2008; 3183
- 13j Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
- 14a Shen HC. Tetrahedron 2008; 64: 3885
- 14b Belmont P, Parker E. Eur. J. Org. Chem. 2009; 6075
- 14c Krause N, Belting V, Deutsch C, Erdsack J, Fan H.-T, Gockel B, Hoffmann-Röder A, Morita N, Volz F. Pure Appl. Chem. 2008; 80: 1063
-
14d Krause N, Aksin-Artok Ö, Breker V, Deutsch C, Gockel B, Poonoth M, Sawama Y, Sawama Y, Sun T, Winter C. Pure Appl. Chem. 2010; 82: 1529
- 14e Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896 ; Angew. Chem. 2006, 118, 8064
- 14f Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 14g Skouta R, Li C.-J. Tetrahedron 2008; 64: 4917
- 14h Li Z, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
- 15 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 4467
- 16a Yu Y, Yang W, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2013; 52: 7586 ; Angew. Chem.; 2013, 125: 7735
- 16b Hashmi AS. K, Yang W, Yu Y, Hansmann MM, Rudolph M, Rominger F. Angew. Chem. Int. Ed. 2013; 52: 1329 ; Angew. Chem. 2013, 125, 1368 and references therein
- 17 Synthesis of 2; General Procedure: AuCl(PPh3) (10 mol%) and AgOTf (10 mol%) were added to a stirred solution of 1 (0.2 mmol) in CH2Cl2 (2 mL) under nitrogen at room temperature, and the solution was stirred for 15 min. p-TsOH·H2O (0.2 mmol) was added and the resulting mixture was stirred for 6 h at 40 °C, then cooled to room temperature and the solvent was removed under reduced pressure. The resulting residue was purified by flash column chromatography to give tricyclic chromone 2. Data for 2g: Yield: 56%. 1H NMR (400 MHz, CDCl3): δ = 7.62 (dd, J = 8.4 Hz, 1 H), 7.18 (td, J = 8.0 Hz, 1 H), 6.88 (m, 2 H), 5.44 (t, J = 2.0 Hz, 1 H), 2.69 (m, 1 H), 2.55 (m, 1 H), 2.50 (m, 1 H), 2.21 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ = 180.7, 142.0, 123.4, 123.1, 119.8, 119.7, 112.7, 112.4, 84.7, 31.5, 31.0; HRMS (ESI): m/z [M + Na]+ calcd for C12H9FO2Na: 227.0484; found: 227.0489.
- 18 Hashmi AS. K. Angew. Chem. Int. Ed. 2010; 49: 5232 ; Angew. Chem. 2010, 122, 5360