Synlett 2015; 26(14): 1940-1954
DOI: 10.1055/s-0034-1380618
account
© Georg Thieme Verlag Stuttgart · New York

Inter- and Intramolecular Dienamine Organocatalytic Strategies for the Synthesis of Tetrahydroisoquinolines and Tricyclic Derivatives via [3+2] and [4+2] Cycloadditions

Alberto Fraile
Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Email: jose.aleman@uam.es   URL: www.uam.es/jose.aleman
,
José Alemán*
Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Email: jose.aleman@uam.es   URL: www.uam.es/jose.aleman
› Author Affiliations
Further Information

Publication History

Received: 04 March 2015

Accepted after revision: 24 March 2015

Publication Date:
25 June 2015 (online)


Abstract

The use of dienamines represents a new approach for carrying out asymmetric aminocatalytic reactions controlled by a remote chiral catalyst. In this account, we describe our contributions on the use of dienamine methodologies for the synthesis of interesting compounds from a natural product and pharmaceutical point-of-view. Dienamine aminocatalysis is employed for the synthesis of tetrahydroisoquinoline derivatives via intermolecular [3+2] cycloadditions, and for the preparation of tricyclic products by means of intramolecular [4+2] Diels–Alder reactions.

1 Introduction

2 Intermolecular Dienamine versus Iminium Ion Catalysis: Synthesis of Tetrahydroisoquinoline Derivatives

3 Intramolecular Dienamine Catalysis: Synthesis of Tricyclic Derivatives

4 Outlook

 
  • References

  • 1 MacMillan DW. C. Nature 2008; 455: 304

    • For some selected reviews on organocatalysis, see:
    • 2a Berkessel A, Göger H. Asymmetric Organocatalysis . Wiley-VCH; Weinheim: 2005
    • 2b Dalko PI. Enantioselective Organocatalysis . Wiley-VCH; Weinheim: 2007
    • 2c Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 2d Bernardi L, Fochi M, Franchini MC, Ricci A. Org. Biomol. Chem. 2012; 10: 2911
    • 2e Cabrera S, Alemán J. Chem. Soc. Rev. 2013; 42: 774
  • 3 Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632 ; and references cited therein
  • 4 Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
  • 5 Pihko PM. Hydrogen Bonding in Organic Synthesis . Wiley-VCH; Weinheim: 2009
  • 6 Maruoka K. Asymmetric Phase Transfer Catalysis . Wiley-VCH; Weinheim: 2008
  • 7 García Mancheño O, Tangen P, Rohlmann R, Fröhlich R, Alemán J. Chem. Eur. J. 2011; 17: 984
  • 8 Parra A, Alfaro R, Marzo L, Moreno-Carrasco A, García Ruano JL, Alemán J. Chem. Commun. 2012; 48: 9759
  • 9 Marcos V, Alemán J, García Ruano JL, Marini F, Tiecco M. Org. Lett. 2011; 13: 3052
  • 10 Jarava-Barrera C, Esteban F, Navarro-Ranninger C, Parra A, Alemán J. Chem. Commun. 2013; 49: 2001
  • 11 Alemán J, Núñez A, Marzo L, Marcos V, Alvarado C, García Ruano JL. Chem. Eur. J. 2010; 16: 9453
  • 12 Alemán J, Alvarado C, Marcos V, Núñez A, García Ruano JL. Synthesis 2011; 1840
  • 13 Alemán J, Fraile A, Marzo L, García Ruano JL, Izquierdo C, Díaz-Tendero S. Adv. Synth. Catal. 2012; 9: 1665
  • 14 Martín-Santos C, Jarava-Barrera C, Parra A, Esteban F, Navarro-Ranninger C, Alemán J. ChemCatChem 2012; 4: 976
  • 15 García Ruano JL, Marcos V, Suanzes JA, Marzo L, Alemán J. Chem. Eur. J. 2009; 15: 6576
    • 16a García Ruano JL, Marcos V, Alemán J. Chem. Commun. 2009; 4435
    • 16b Alemán J, Marcos V, Marzo L, García Ruano JL. Eur. J. Org. Chem. 2010; 4482
    • 16c García Ruano JL, Alvarado C, Díaz-Tendero S, Alemán J. Chem. Eur. J. 2011; 17: 4030

      For reviews on dienamine activation, see:
    • 17a Ramachary DB, Reddy YV. Eur. J. Org. Chem. 2012; 865
    • 17b Parra A, Reboredo S, Alemán J. Angew. Chem. Int. Ed. 2012; 51: 9734
    • 17c See also: Jurberg ID, Chatterjee I, Tannerta R, Melchiorre P. Chem. Commun. 2013; 49: 4869
    • 18a Nigmatov AG, Serebryakov EP. Russ. Chem. Bull. 1993; 42: 213
    • 18b Nigmatov AG, Serebryakov EP. Russ. Chem. Bull. 1996; 45: 623
    • 18c Serebryakov EP, Nigmatov AG, Shcherbakov MA, Struchkova MI. Russ. Chem. Bull. 1998; 47: 82
  • 19 Bertelsen S, Marigo M, Brandes S, Dinér P, Jørgensen KA. J. Am. Chem. Soc. 2006; 128: 12973
  • 20 Bergonzini G, Vera S, Melchiorre P. Angew. Chem. Int. Ed. 2010; 49: 9685
  • 21 Han B, He Z.-Q, Li J.-L, Li R, Jiang K, Liu T.-Y, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5474
  • 22 Izquierdo C, Esteban F, Parra A, Alfaro R, Alemán J, Fraile A, García Ruano JL. J. Org. Chem. 2014; 79: 10417
    • 23a Hashimoto T, Omote M, Maruoka K. Angew. Chem. Int. Ed. 2011; 50: 3489
    • 23b Hashimoto T, Maeda Y, Omote M, Nakatsu H, Maruoka K. J. Am. Chem. Soc. 2010; 132: 4076
    • 23c Milosevic S, Togni A. J. Org. Chem. 2013; 78: 9638

      For example, see:
    • 24a Granger BA, Kaneda K, Martin SF. ACS Comb. Sci. 2012; 14: 75
    • 24b Liu X.-H, Cui P, Song B.-A, Bhadury PS, Zhu H.-L, Wang S.-F. Bioorg. Med. Chem. Lett. 2008; 16: 4075

      For example, see:
    • 25a Jen WS, Wiener JJ. M, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 9874
    • 25b Chow SS, Navalainen M, Evans CA, Johanner CW. Tetrahedron Lett. 2007; 48: 277
    • 25c Karlsson S, Högberg H.-E. Eur. J. Org. Chem. 2003; 2782
    • 25d Lemay M, Trant J, Ogilvie WW. Tetrahedron 2007; 63: 11644
  • 26 CCDC 1004254 (1a′), 1004255 (9a) and 1004256 (7a) contain the crystallographic data. These data can be obtained free of charge at www.ccdc.cam.ac.uk.
  • 27 Martín-Santos C, Jarava-Barrera C, del Pozo S, Parra A, Díaz-Tendero S, Mas-Ballesté R, Cabrera S, Alemán J. Angew. Chem. Int. Ed. 2014; 53: 8184
  • 28 For a review, see: Zhuo CX, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
  • 29 Imbos R, Minnard AJ, Feringa BL. J. Am. Chem. Soc. 2002; 124: 184

    • For selected examples, see:
    • 31a Hayashi Y, Gotoh H, Tamura T, Yamaguchi H, Masui R, Shoji M. J. Am. Chem. Soc. 2005; 127: 16028
    • 31b Vo NT, Pace RD. M, O’Hara F, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 404
    • 31c Corbett MT, Johnson JS. Chem. Sci. 2013; 4: 2828
    • 31d Tello-Aburto R, Kalastabakken KA, Volp KA, Harned AM. Org. Biomol. Chem. 2011; 9: 7849
    • 31e Leon R, Jawalekar A, Redert T, Gaunt MJ. Chem. Sci. 2011; 2: 1487
    • 31f Gu Q, Rong ZQ, Zheng C, You SL. J. Am. Chem. Soc. 2010; 132: 4056
    • 31g Gu Q, You SL. Chem. Sci. 2011; 2: 1519
    • 31h Wu W, Li X, Huang H, Yuan X, Lu J, Zhu K, Ye J. Angew. Chem. Int. Ed. 2013; 52: 1743
    • 31i Rubush DM, Morges MA, Rose BJ, Thamm DH, Rovis T. J. Am. Chem. Soc. 2012; 134: 13554
    • 31j Gu G, You SL. Org. Lett. 2011; 13: 5192
  • 32 Takizawa S, Nguyen TM. N, Grossmann A, Enders D, Sasai H. Angew. Chem. Int. Ed. 2012; 51: 5423

    • For examples, see:
    • 33a Brown GD, Sy L.-K. Tetrahedron 2004; 60: 1139 ; and references cited therein
    • 33b Plano MF, Labdie GR, Tekwani BL, Cravero RM. ARKIVOC 2011; (vii): 477
    • 33c Caspi E, Badar K, Walter S. J. Org. Chem. 1961; 26: 3894
  • 34 The relative Gibbs free energies between the conformers were computed using DFT at the B3LYP/6-311+G(d,p)//B3LYP/6-31G (d) level including solvent effects (CH2Cl2), with single point energy calculations in the SMD model using the Gaussian09 program: Gaussian 09, Revision B.01; Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc; Wallingford CT: 2009