Synthesis 2015; 47(10): 1469-1478
DOI: 10.1055/s-0034-1380268
paper
© Georg Thieme Verlag Stuttgart · New York

Eco-Friendly Approach to Tetrasubstituted Diazodihydrofuran­ones: Valuable Precursors of Oxetane Derivatives and Other Heterocyclic Compounds

Olesia S. Galkina
a   Saint-Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, Petrodvorets, St. Petersburg 198504, Russian Federation   Email: vnikola@VN6646.spb.edu
,
Gerhard Maas*
b   Universität Ulm, Institut für Organische Chemie I, Albert-Einstein-Allee 11, 89081 Ulm, Germany   Email: gerhard.maas@uni-ulm.de
,
Liudmila L. Rodina
a   Saint-Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, Petrodvorets, St. Petersburg 198504, Russian Federation   Email: vnikola@VN6646.spb.edu
,
Valerij A. Nikolaev*
a   Saint-Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, Petrodvorets, St. Petersburg 198504, Russian Federation   Email: vnikola@VN6646.spb.edu
› Author Affiliations
Further Information

Publication History

Received: 29 November 2014

Accepted after revision: 02 February 2015

Publication Date:
12 March 2015 (online)


Abstract

Eco-friendly routes to 2,2,5,5-tetrasubstituted 4-diazodihydrofuran-3(2H)-ones were developed. In this manner, useful precursors to oxetane derivatives, potential NSAIDs, and other biologically active pharmaceuticals can be prepared without use of toxic reagents and solvents.

Supporting Information

 
  • References

    • 1a Candeias NR, Trindade AF, Gois PM. P, Afonso CA. M In Comprehensive Organic Synthesis . 2nd ed.; Vol. 3. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 944
    • 1b Kirmse W. Eur. J. Org. Chem. 2002; 2193
    • 1c Gill GB In Comprehensive Organic Synthesis . Vol. 3. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 887
    • 1d Ando W In The Chemistry of Diazonium and Diazo Groups . Vol. 1. Patai S. John Wiley; Chichester: 1978: 458
    • 1e Meier H, Zeller KP. Angew. Chem., Int. Ed. Engl. 1975; 14: 32 ; Angew. Chem. 1975, 87, 52
    • 1f Rodina LL, Korobitsyna IK. Russ. Chem. Rev. 1967; 36: 260
    • 1g Bachman WE, Strove WS. Org. React. 1942; 1: 38
    • 2a Norbeck DW, Kramer JB. J. Am. Chem. Soc. 1988; 110: 7217
    • 2b Beneke J, Schobert R. Synthesis 2013; 45: 773
    • 2c Lowe G, Ridley DD. J. Chem. Soc., Perkin Trans. 1 1973; 2024
    • 2d Lawton G, Moody CJ, Pearson CJ, Williams DJ. J. Chem. Soc., Perkin Trans. 1 1987; 885
    • 2e Bolster JM, Kellogg RM. J. Org. Chem. 1982; 47: 4429
    • 2f Stachel HD, Zeitler K. Arch. Pharm. (Weinheim) 1995; 328: 99
    • 2g Leungtoung R, Wentrup C. J. Org. Chem. 1992; 57: 4850
    • 2h Brook PR, Brophy BV. J. Chem. Soc., Perkin Trans. 1 1985; 2509
  • 3 Stork G, Szajewsk RP. J. Am. Chem. Soc. 1974; 96: 5787
    • 4a Shin SS, Noh MS, Byun YJ, Choi JK, Kim JY, Lim KM, Ha JY, Kim JK, Lee CH, Chung S. Bioorg. Med. Chem. Lett. 2001; 11: 165
    • 4b Shin SS, Byun Y, Lim KM, Choi JK, Lee KW, Moh JH, Kim JK, Jeong YS, Kim JY, Choi YH, Koh HJ, Park YH, Oh YI, Noh MS, Chung S. J. Med. Chem. 2004; 47: 792
    • 5a Rodina LL, Medvedev YY, Moroz PN, Nikolaev VA. Russ. J. Org. Chem. 2012; 48: 602
    • 5b Rodina LL, Medvedev JJ, Galkina OS, Nikolaev VA. Eur. J. Org. Chem. 2014; 2993
    • 6a Schmidt DG, Zimmer H. Synth. Commun. 1981; 11: 385
    • 6b Dupont G. Ann. Chim. Phys. 1913; 30: 485
    • 6c Sandris C, Ourisson G. Bull. Soc. Chim. Fr. 1958; 345
    • 6d Sandris C, Ourisson G. Bull. Soc. Chim. Fr. 1956; 958
    • 7a Regitz M. Angew. Chem., Int. Ed. Engl. 1966; 5: 681
    • 7b Regitz M, Maas G. Diazo Compounds: Properties and Synthesis . Academic Press; Orlando: 1986: 596
    • 8a Korobitsyna IK, Rodina LL, Stashkova LM. Zh. Obshch. Khim. 1963; 33: 3109 ; Chem. Abstr. 1964, 60, 9605
    • 8b Korobitsyna IK, Rodina LL. Zh. Obshch. Khim. 1964; 34: 2851 ; Chem. Abstr. 1964, 61, 92247
    • 8c Korobitsyna IK, Rodina LL. Zh. Org. Khim. 1965; 1: 932 ; Chem. Abstr. 1965, 63, 6939
    • 8d Korobitsyna IK, Rodina LL, Shuvalova VG. Zh. Org. Khim. 1968; 4: 2016 ; Chem. Abstr. 1969, 70, 28725
    • 8e Rodina LL, Bulusheva VV, Korobitsyna IK. Zh. Org. Khim. 1974; 10: 1937 ; Chem. Abstr. 1975, 82, 43243
    • 8f Malashikhin SA, Linden A, Heimgartner H, Rodina LL, Nikolaev VA. Helv. Chim. Acta 2008; 91: 1662
  • 9 Lombardo L, Mander LN. Synthesis 1980; 368
    • 10a Curtius T. Ber. Dtsch. Chem. Ges. 1889; 22: 2161
    • 10b Curtius T, Kastner R. J. Prakt. Chem. 1911; 83: 215
    • 11a Green Chemistry Education: Changing the Course of Chemistry . In ACS Symposium Series 1011. Anastas PT, Levy IJ, Parent KE. American Chemical Society; Washington DC: 2009
    • 11b Green Chemical Syntheses and Processes . In ACS Symposium Series 767. Anastas PT, Heine LG, Williamson TC. American Chemical Society; Washington DC: 2000
  • 12 Langner BE In Ullmann’s Encyclopedia of Industrial Chemistry . Kellersohn T. Wiley-VCH; Weinheim: 2000. 6th ed., Vol. 32 343
  • 13 Picot A, Proust N. Actual. Chim. 1998; 16
  • 14 Proctor NH, Hughes JP, Hathaway GJ. Proctor and Hughes’ Chemical Hazards of the Workplace . 5th ed. Wiley-Interscience; Hoboken: 2004: 785
    • 15a Snyder R. Drug Chem. Toxicol. 2000; 23: 13
    • 15b Huff J. Int. J. Occup. Environ. Health 2007; 13: 213
  • 16 Craig BD, Anderson DS. Handbook of Corrosion Data . 2nd ed. ASM International; Materials Park (OH, USA): 1995: 998
    • 17a Newman MS. Org. Synth. 1960; 40: 88
    • 17b Saimoto H, Hiyama T, Nozaki H. Bull. Chem. Soc. Jpn. 1983; 56: 3078
    • 17c Shi X, Mou M, Shi S, Deng L, Ma X, Hu C. PCT Int. Appl CN 102321054, 2012 ; Chem. Abstr. 2012, 156, 203032.
    • 18a Tikhomolov PA, Druzhinin AE. Zh. Obshch. Khim. 1937; 7: 869 ; Chem. Abstr. 1937, 31, 41414
    • 18b Jasnopol’skii VD. Zh. Obshch. Khim. 1948; 18: 1789 ; Chem. Abstr. 1949, 43, 17497
  • 19 Zal’kind YS, Venus-Danilova ED, Ryabtseva VI. Zh. Obsh. Khim. 1950; 20: 2222 ; Chem. Abstr. 1951, 45, 41391
    • 20a Uyehara T, Takehara N, Ueno M, Sato T. Bull. Chem. Soc. Jpn. 1995; 68: 2687
    • 20b Snyder SA, Corey EJ. J. Am. Chem. Soc. 2006; 128: 740
    • 20c King GR, Mander LN, Monck NJ. T, Morris JC, Zhang HB. J. Am. Chem. Soc. 1997; 119: 3828
  • 21 Ruedi G, Oberli MA, Nagel M, Weymuth C, Hansen HM. Synlett 2004; 2315
  • 22 Bamford WR, Stevens TS. J. Chem. Soc. 1952; 4675
  • 23 Single-crystal growth was carried out in co-solvent of hexane and CHCl3 at +4 °C. Crystal data for 9d: C25H22Cl2N2O4S, crystal dimension 0.27 × 0.23 × 0.19 mm3, monoclinic, space group P21/c, a = 16.2956(2) Å, b = 8.45233(11) Å, c = 17.6456(2) Å, α = 90°, β = 101.0863(12)°, γ = 90°, V = 2385.08(5) Å3, Mr = 517.40, Z = 4, μ(CuKα) = 3.568 mm–1, R1 = 0.0349, wR 2 = 0.0907. Supplementary crystallographic data for this paper have been deposited at Cambridge Crystallographic Data Centre (CCDC 1008367) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.
    • 24a Jasiobedzki W, Matacz Z. Rocz. Chem. 1968; 42: 1599 ; Chem. Abstr. 1969, 70, 37576
    • 24b Jasiobedzki W, Wozniak-Kornacka J, Rombalski L. Bull. Pol. Acad. Sci., Chem. 1996; 44: 1 ; Chem. Abstr. 1996, 126, 31111
  • 25 Rodina LL, Malashikhin SA, Galkina OS, Nikolaev VA. Helv. Chim. Acta 2009; 92: 1990
  • 26 Wall M, Subasinghe N, Sui Z, Flores C. PCT Int. Appl WO 2014028800, 2014 ; Chem. Abstr. 2014, 160, 370149.