Synlett 2015; 26(08): 1089-1092
DOI: 10.1055/s-0034-1380227
letter
© Georg Thieme Verlag Stuttgart · New York

Divergent Synthesis of Aminocyclopentitol Analogues via Stereoselective Amination of Cyclic Polybenzyl Ether with Chlorosulfonyl Isocyanate

Young Hoon Jung*
School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea   Email: yhjung@skku.edu
,
Seung In Kim
School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea   Email: yhjung@skku.edu
,
Yeon Ju Hong
School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea   Email: yhjung@skku.edu
,
Sook Jin Park
School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea   Email: yhjung@skku.edu
,
Kyung Tae Kang
School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea   Email: yhjung@skku.edu
,
So Yeon Kim
School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea   Email: yhjung@skku.edu
,
Jung Sang Park
School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea   Email: yhjung@skku.edu
,
In Su Kim
School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea   Email: yhjung@skku.edu
› Author Affiliations
Further Information

Publication History

Received: 29 December 2014

Accepted after revision: 23 January 2015

Publication Date:
20 February 2015 (online)


Abstract

The divergent synthesis of some novel aminocyclopentitol analogues was concisely achieved from readily available d-galactose via the highly diastereoselective amination of carbocyclic polybenzyl ether using chlorosulfonyl isocyanate, diastereoselective dihydroxylation, and epoxidation as the key steps.

Supporting Information

 
  • References and Notes

  • 2 For a review of synthetic and biological features of the mannostatins, see: Berecibar A, Grandjean C, Siriwardena A. Chem. Rev. 1999; 99: 779
  • 4 Yaginuma S, Muto N, Tsujino M, Sudate Y, Hayashi M, Otani M. J. Antibiot. 1981; 34: 359
  • 5 Kusuka T, Yamamoto H, Shibata M, Muroi M, Kishi T, Mizuno K. J. Antibiot. 1968; 21: 255
  • 6 Montgomery JA. Med. Res. Rev. 1982; 2: 271
    • 8a Kameda Y, Horii S. J. Chem. Soc., Chem. Commun. 1972; 746
    • 8b Asano N, Takeuchi M, Ninomiya K, Kameda Y, Matsui K. J. Antibiot. 1984; 37: 859
    • 8c Ogawa S, Miyamoto Y, Nakajima A. Chem. Lett. 1989; 725
    • 8d Ogawa S, Nakajima A, Miyamoto Y. J. Chem. Soc., Perkin Trans. 1 1991; 3287
  • 9 Mahmud T. Nat. Prod. Rep. 2003; 20: 137
  • 11 Kim IS, Li QR, Lee JK, Lee SH, Lim JK, Zee OP, Jung YH. Synlett 2007; 1711
  • 12 Li QR, Kim SI, Park SJ, Yang HR, Baek AR, Kim IS, Jung YH. Tetrahedron 2013; 69: 10384
  • 14 Dasari B, Jogula S, Borhade R, Balasubramanian S, Chandrasekar G, Kitambi SS, Arya P. Org. Lett. 2013; 15: 432
  • 15 Characterization Data of 6 Rf = 0.26 (CH2Cl2–MeOH–EtOH–NH4OH = 5:2:2:1); [α]25 D +38.96 (c 1.0, CHCl3). 1H NMR (300 MHz, CD3OD): δ = 5.71 (d, J = 1.2 Hz, 1 H), 4.46 (d, J = 5.4 Hz, 1 H), 4.21–4.16 (m, 2 H), 3.83–3.77 (m, 2 H). 13C NMR (125 MHz, CD3OD): δ = 146.9, 128.3, 79.2, 73.3, 61.2, 59.0. HRMS (EI): m/z calcd for C6H11NO3 [M]+: 145.0739; found: 145.0742.
  • 16 Characterization Data of 7 Rf = 0.17 (CH2Cl2–MeOH–EtOH–NH4OH = 5:3:3:1); [α]25 D –36.8 (c 1.0, CHCl3). 1H NMR (300 MHz, D2O): δ = 4.43–4.39 (m, 1 H), 4.25 (d, J = 8.7 Hz, 1 H), 4.00 (d, J = 4.8 Hz, 1 H), 3.82 (d, J = 12.3 Hz, 1 H), 3.63 (d, J = 12.0 Hz, 1 H), 3.62–3.57 (m, 1 H). 13C NMR (125 MHz, D2O): δ = 81.4, 74.1, 73.7, 67.9, 62.4, 56.7. HRMS (EI): m/z calcd for C6H13NO5 [M]+: 179.0794; found: 179.0795.
  • 17 Characterization Data of 8 Rf = 0.23 (CH2Cl2–MeOH–EtOH–NH4OH = 5:2:1:1). [α]25 D –42.8 (c 1.0, CHCl3). 1H NMR (300 MHz, D2O): δ = 4.30–4.23 (m, 2 H), 3.87 (dd, J = 7.8, 5.4 Hz, 1 H), 3.77 (s, 1 H), 3.66 (d, J = 13.2 Hz, 1 H), 3.57 (d, J = 8.1 Hz, 1 H). 13C NMR (125 MHz, D2O): δ = 74.8, 68.6, 66.2, 61.8, 57.9, 56.2. HRMS (EI): m/z calcd for C6H11NO4 [M]+: 161.0688; found: 161.0689.