Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(12): 1769-1773
DOI: 10.1055/s-0034-1379909
DOI: 10.1055/s-0034-1379909
letter
Bimolecular Intermolecular-Michael/Intramolecular-Michael/Aromatization Reaction of 1-Cyanocyclopropane 1-Esters or 1,1-Dicyanocyclopropanes: A Straightforward Approach to Fully Substituted Benzenes
Further Information
Publication History
Received: 25 January 2015
Accepted after revision: 17 March 2015
Publication Date:
23 April 2015 (online)
Abstract
An efficient and straightforward synthetic protocol has been developed for the preparation of fully substituted benzenes via a [3+3]-cyclodimerization reaction of 1-cyanocyclopropane 1-esters or 1,1-dicyanocyclopropanes for the generation of a wide range of structurally interesting significant compounds. The reaction utilizes Et3N-promoted C–C bond cleavage, two new C–C bond formations of 1-cyanocyclopropane 1-ester and simultaneous aromatization by removal of cyano and ester groups in a domino fashion.
Key words
[3+3]-cyclodimerization - donor–acceptor cyclopropane - 1-cyanocyclopropane 1-ester - fully substituted benzene - aromatizationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379909.
- Supporting Information
-
References and Notes
- 1 Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
- 2 Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 3 Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
- 4 Mack DJ. N, Njardarson JT. ACS Catal. 2013; 3: 272
- 5 Reichelt A, Martin SF. Acc. Chem. Res. 2006; 39: 433
- 6 Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
- 7 Sydnes LK. Chem. Rev. 2003; 103: 1133
- 8 Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 9 Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
- 10 Gnad F, Reiser O. Chem. Rev. 2003; 103: 1603
- 11 Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
- 12 Wang ZW. Synlett 2012; 23: 2311
- 13 Tang P, Qin Y. Synthesis 2012; 44: 2969
- 14 Reisman SE, Nani RR, Levin S. Synlett 2011; 2437
- 15 De Simone F, Saget T, Benfatti F, Almeida S, Waser J. Chem. Eur. J. 2011; 17: 14527
- 16 Melnikov MY, Budynina EM, Ivanova OA, Trushkov IV. Mendeleev Commun. 2011; 21: 293
- 17 Lebold TP, Kerr MA. Pure Appl. Chem. 2010; 82: 1797
- 18 Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 19 Agrawal D, Yadav VK. Chem. Commun. 2008; 44: 6471
- 20a Beal RB, Dombroski MA, Snider BB. J. Org. Chem. 1986; 51: 4391
- 20b Shimada S, Hashimoto Y, Sudo A, Hasegawa M, Saigo K. J. Org. Chem. 1992; 57: 7126
- 20c Yadav VK, Sriramurthy V. Org. Lett. 2004; 6: 4495
- 20d Yadav VK, Sriramurthy V. Angew. Chem. 2004; 116: 2723
- 20e Pohlhaus PD, Johnson JS. J. Org. Chem. 2005; 70: 1057
- 20f Bernard AM, Frongia A, Piras PP, Secci F, Spiga M. Org. Lett. 2005; 7: 4565
- 20g Carson CA, Kerr MA. J. Org. Chem. 2005; 70: 8242
- 20h Wurz RP, Charette AB. Org. Lett. 2005; 7: 2313
- 20i Yu M, Lynch V, Pagenkopf BL. Org. Lett. 2001; 3: 2563
- 20j Yu M, Pagenkopf BL. J. Am. Chem. Soc. 2003; 125: 8122
- 20k Liu L, Montgomery JJ. Org. Lett. 2007; 9: 3885
- 20l Perreault C, Goudreau SR, Zimmer LE, Charette AB. Org. Lett. 2008; 10: 689
- 20m Ivanova OA, Budynina EM, Grishin YK, Trushkov IV, Verteletskii PV. Angew. Chem. Int. Ed. 2008; 47: 1107
- 21 Novikov RA, Timofeev VP, Tomilov YV. J. Org. Chem. 2012; 77: 5993
- 22 Ivanova OA, Budynina EM, Chagarovskiy AO, Trushkov IV, Melnikov MY. J. Org. Chem. 2011; 76: 8852
- 23 Ohashi M, Taniguchi T, Ogoshi S. Organometallics 2010; 29: 2386
- 24a Kawasaki T, Saito S, Yamamoto Y. J. Org. Chem. 2002; 67: 4911
- 24b Novikov RA, Tomilov YV. Mendeleev Commun. 2015; 25: 1
- 25 De Simone F, Waser J. Synthesis 2009; 3353
- 26a Novikov RA, Korolev VA, Timofeev VP, Tomilov YV. Tetrahedron Lett. 2011; 52: 4996
- 26b Novikov RA, Tarasova AV, Suponitsky KY, Tomilov YV. Mendeleev Commun. 2014; 24: 346
- 27 Liu J, Zhou L, Ye W, Wang C. Chem. Commun. 2014; 50: 9068
- 28a Thiemann T, Fujii H, Ohira D, Arima K, Li Y, Mataka S. New J. Chem. 2003; 27: 1377
- 28b Diness F, Begtrup M. Org. Lett. 2014; 16: 3130
- 29a Raveendran AE, Paul RR, Suresh E, Nair V. Org. Biomol. Chem. 2010; 8: 901
- 29b Rama V, Kanagaraj K, Subramanian T, Suresh P, Pitchumani K. Catal. Commun. 2012; 26: 39
- 29c Wang Q.-F, Song X.-K, Chen J, Yan C.-G. J. Comb. Chem. 2009; 11: 1007
- 30a Graziano M, Chiosi S. J. Chem. Res. (S). 1989; 44
- 30b Graziano L, Iesce R, Cermola F, Cimminello G. J. Chem. Res. (S). 1992; 4
- 31 Crystallographic data for 2a, 2f, 2j have been deposited with the Cambridge Crystallographic Data Centre with the deposition numbers CCDC 1007031, 1009273, 1045365. These data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033, e-mail: deposit@ccdc.cam.ac.uk].
- 32 General Procedure for the Preparation of Polysubstituted 6-Cyanobenzoates: The appropriate ethyl 2-aroyl-3-aryl-1-cyanocyclopropane-1-carboxylates (1 mmol) or 2-aroyl-3-aryl-1,1-dicyanocyclopropanes (1 mmol) and Et3N (306 mg, 3 mmol) were dissolved in DMF (15 mL) at r.t., then the reaction mixture was stirred under reflux for ca 16 h, and the completion of reaction was confirmed by TLC (EtOAc–hexanes, 1:5). After the completion of reaction, the reaction mixture was cooled to r.t. After the removal of the solvent by vacuum distillation, the residues were diluted with CH2Cl2 (20 mL). Subsequently, the resultant solution was washed with H2O (10 mL) and brine (10 mL), and dried over anhyd Na2SO4. The crude product was purified by flash chromatography (silica gel, EtOAc–hexanes, 1:10) to give the product 2a–j. Ethyl 6-Cyano-3,4-bis(3-chlorophenyl)-2,5-bis(4-methylbenzoyl)benzoate (2a): white solid; mp 234.3–234.8 °C (PE–EtOAc). 1H NMR (400 MHz, CDCl3): δ = 7.52 (d, J = 7.6 Hz, 2 H), 7.41 (d, J = 7.6 Hz, 2 H), 7.16 (d, J = 7.6 Hz, 2 H), 7.10 (d, J = 7.6 Hz, 2 H), 6.92–6.96 (m, 3 H), 6.57–6.88 (m, 5 H), 4.24 (q, J = 7.2 Hz, 2 H), 2.36 (s, 3 H), 2.33 (s, 3 H), 1.12 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 194.2, 193.1, 163.6, 146.1, 145.9, 144.7, 142.8, 142.5, 141.3, 136.4, 136.2, 134.2, 133.2, 133.0, 130.2, 129.8, 129.5, 129.1, 129.0, 128.8, 128.4, 128.3, 128.1, 114.3, 110.1, 77.2, 63.2, 29.7, 21.8, 21.7, 13.3. IR (KBr): 2982, 2226, 1726, 1672, 1517, 1474, 1395, 1319, 1220, 1172, 1123, 1070, 1012, 975 cm–1. MS (EI): m/z (%) = 632.23 (95) [M + 1]+. HRMS (ESI): m/z [M + H]+ calcd for C38H27Cl2NO4: 632.1395; found: 632.1391.
- 33a Hogan I, Jenkins PD, Sainsbury M. Tetrahedron 1990; 46: 2943
- 33b Gowrisankar S, Park DY, Kim JN. Bull. Korean Chem. Soc. 2005; 26: 1826
- 34 Dorokhov DV, Platonov DN, Suponitsky KY, Tomilov YV. Russ. Chem. Bull. Int. Ed. 2011; 60: 345