Synlett 2015; 26(02): 221-227
DOI: 10.1055/s-0034-1379491
letter
© Georg Thieme Verlag Stuttgart · New York

Ferrocene Analogues of Hydrogen-Bond-Donor Catalysts: An Investigative Study on Asymmetric Michael Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes

Kadiyala Srinivasa Rao
Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India   Email: trivedi@iict.res.in   Email: rtrajiv401@gmail.com   Fax: +91(40)27191667   Fax: +91(40)27160921
,
Rajiv Trivedi*
Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India   Email: trivedi@iict.res.in   Email: rtrajiv401@gmail.com   Fax: +91(40)27191667   Fax: +91(40)27160921
,
M. Lakshmi Kantam
Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India   Email: trivedi@iict.res.in   Email: rtrajiv401@gmail.com   Fax: +91(40)27191667   Fax: +91(40)27160921
› Author Affiliations
Further Information

Publication History

Received: 28 August 2014

Accepted after revision: 13 October 2014

Publication Date:
18 November 2014 (online)


Abstract

This report describes the synthesis of eight ferrocene derivatives of squaramide- or thiourea- based bifunctional catalysts containing cinchona alkaloid moieties. A stepwise sequential route was used to assemble the various components of these ferrocene derivatives. The resulting bifunctional catalysts were used successfully in asymmetric Michael additions of 1,3-dicarbonyl compounds to β-nitrostyrenes. The corresponding products were obtained in high yields and in good to excellent enantioselectivities and diastereoselectivities under mild conditions by using 1 mol% of the catalyst.

Supporting Information

 
  • References and Notes

    • 1a Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701
    • 1b Xu L.-W, Xia C.-G. Eur. J. Org. Chem. 2005; 633
    • 1c Berner OM, Tedeschi L, Enders D. Eur. J. Org. Chem. 2002; 1877
    • 1d Christoffers J, Baro A. Angew. Chem. Int. Ed. 2003; 42: 1688
    • 1e Notz W, Tanaka F, Barbas CF. III. Acc. Chem. Res. 2004; 37: 580
    • 1f Ballini R, Bosica G, Fiorini D, Palmieri A, Petrini M. Chem. Rev. 2005; 105: 933
    • 1g Almaşi D, Alonso DA, Nájera C. Tetrahedron: Asymmetry 2007; 18: 299
    • 1h Sulzer-Mossé S, Alexakis A. Chem. Commun. 2007; 3123
    • 1i Nising CF, Bräse S. Chem. Soc. Rev. 2008; 37: 1218
    • 1j Perlmutter P. Conjugate Addition Reactions in Organic Synthesis. Pergamon; Oxford: 1992
    • 1k List B, Yang JW. Science 2006; 313: 1584
    • 1l MacMillan DW. C. Nature 2008; 455: 304
    • 1m Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 1n Min C, Han X, Liao Z, Wu X, Zhou H.-B, Dong C. Adv. Synth. Catal. 2011; 353: 2715
    • 2a Mase N, Thayumanavan R, Tanaka F, Barbas CF. III. Org. Lett. 2004; 6: 2527
    • 2b Wang W, Wang J, Li H. Angew. Chem. Int. Ed. 2005; 44: 1369
    • 2c Mase N, Watanabe K, Yoda H, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2006; 128: 4966
    • 3a Sibi MP, Manyem S. Tetrahedron 2000; 56: 8033
    • 3b Czekelius C, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 612
    • 3c Ban S, Du D.-M, Liu H, Yang W. Eur. J. Org. Chem. 2010; 5160
    • 3d Tan B, Zhang X, Chua PJ, Zhong GF. Chem. Commun. 2009; 779
    • 3e Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
    • 3f Zhou W.-M, Liu H, Du D.-M. Org. Lett. 2008; 10: 2817
    • 3g Tsubogo T, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed. 2009; 48: 9117
    • 3h Gao P, Wang C, Wu Y, Zhou Z, Tang C. Eur. J. Org. Chem. 2008; 4563
    • 3i Manzano R, Andrés JM, Muruzábal MD, Pedrosa R. Adv. Synth. Catal. 2010; 352: 3364
    • 3j Dong Z, Jin X, Wang PC, Min C, Zhang J, Chen Z, Zhou H.-B, Dong C. ARKIVOC 2011; (ix): 367
  • 4 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
    • 5a Huang HB, Jacobsen EN. J. Am. Chem. Soc. 2006; 128: 7170
    • 5b Jiang XX, Zhang YF, Chan SC. A, Wang R. Org. Lett. 2009; 11: 153
    • 5c Takemoto Y. Chem. Pharm. Bull. 2010; 58: 593

    • For the first examples of thiourea catalysts in asymmetric synthesis, see:
    • 5d Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901

    • For a review on asymmetric H-bond donor and thiourea catalysis, see:
    • 5e Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 5f Kataja AO, Koskinen AM. P. ARKIVOC 2010; (ii): 205
    • 5g Shi X, He W, Li H, Zhang X, Zhang S. Tetrahedron Lett. 2011; 52: 3204
    • 5h Jiang X, Zhang Y, Liu X, Zhang G, Lai L, Wu L, Zhang J, Wang R. J. Org. Chem. 2009; 74: 5562
    • 6a Taylor SS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 6b Yu X, Wang W. Chem. Asian J. 2008; 3: 516
    • 6c Almaşi D, Alonso DA, Gómez-Bengoa E, Nájera CJ. J. Org. Chem. 2009; 74: 6163

      For representative examples of squaric acid derived organocatalysts, see:
    • 7a Xu D.-Q, Wang Y.-F, Zhang W, Luo S.-P, Zhong A.-G, Xia A.-B, Xu Z.-Y. Chem. Eur. J. 2010; 16: 4177
    • 7b Wang Y.-F, Zhang W, Luo S.-P, Zhang G.-C, Xia A.-B, Xu X.-S, Xu D.-Q. Eur. J. Org. Chem. 2010; 4981
    • 7c Yang W, Du D.-M. Org. Lett. 2010; 12: 5450
    • 7d Jang HB, Rho HS, Oh JS, Nam EH, Park SE, Bae HY, Song CE. Org. Biomol. Chem. 2010; 8: 3918
    • 7e Lee JW, Ryu TH, Oh JS, Bae HY, Jang HB, Song CE. Chem. Commun. 2009; 7224
    • 7f Cheon CH, Yamamoto H. Tetrahedron 2010; 66: 4257
    • 7g Song HL, Yuan K, Wu XY. Chem. Commun. 2011; 47: 1012
    • 7h Yang W, Jia Y, Du D.-M. Org. Biomol. Chem. 2012; 10: 332
    • 7i Bae HY, Some S, Lee JH, Kim J.-Y, Song MJ, Lee S, Zhang YJ, Song CE. Adv. Synth. Catal. 2011; 353: 3196
    • 7j Yang W, Du D.-M. Adv. Synth. Catal. 2011; 353: 1241
    • 7k Hara N, Nakamura S, Funahashi Y, Shibata N. Adv. Synth. Catal. 2011; 353: 2976
    • 7l Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
    • 7m Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 7n Ling J.-B, Su Y, Zhu H.-L, Wang G.-Y, Xu P.-F. Org. Lett. 2012; 14: 1090
    • 7o Dai L, Yang H, Chen F. Eur. J. Org. Chem. 2011; 5071
    • 7p Zhou E, Liu B, Dong C. Tetrahedron: Asymmetry 2014; 25: 181
    • 7q Zhao M.-X, Ji F.-H, Wei D.-K, Shi M. Tetrahedron 2013; 69: 10763
    • 7r Liu B, Han X, Dong Z, Lv H, Zhou H.-B, Dong C. Tetrahedron: Asymmetry 2013; 24: 1276
    • 8a Wu X.-F, Min C, Nyamzundui E, Zhou H.-B, Dong C. Tetrahedron: Asymmetry 2011; 22: 1640
    • 8b Aknin K, Gauriot M, Totobenazara J, Deguine N, Deprez-Poulain R, Deprez B, Charton J. Tetrahedron Lett. 2012; 53: 458
    • 8c Moon HW, Kim DY. Tetrahedron Lett. 2012; 53: 6569
    • 8d Wang Y.-F, Chen R.-X, Wang K, Zhang B.-B, Li Z.-B, Xu D.-Q. Green Chem. 2012; 14: 893
    • 8e Konishi H, Lam TY, Malerich JP, Rawal VH. Org. Lett. 2010; 12: 2028
    • 8f Qian Y, Ma G, Lv A, Zhu H.-L, Zhao J, Rawal VH. Chem. Commun. 2010; 46: 3004
    • 8g Zhu Y, Malerich JP, Rawal VH. Angew. Chem. Int. Ed. 2010; 49: 153
    • 9a Schreiner PR, Wittkopp A. Org. Lett. 2002; 4: 217
    • 9b Zhang L, Lee M.-M, Lee S.-M, Lee J, Cheng M, Jeong B.-S, Park H.-g, Jew S.-S. Adv. Synth. Catal. 2009; 351: 3063
    • 9c Lee M, Zhang L, Park Y, Park HG. Tetrahedron 2012; 68: 1452
  • 10 Curran DP, Kuo LH. J. Org. Chem. 1994; 59: 3259
    • 11a Ma Z.-W, Liu Y.-X, Zhang W.-J, Tao Y, Zhu Y, Tao J.-C, Tang M.-S. Eur. J. Org. Chem. 2011; 6747
    • 11b Ma Z.-w, Liu Y.-x, Li P.-L, Ren H, Zhu Y, Tao J.-c. Tetrahedron: Asymmetry 2011; 22: 1740
    • 11c Wang C.-J, Dong X.-Q, Zhang Z.-H, Xue Z.-Y, Teng H.-L. J. Am. Chem. Soc. 2008; 130: 8606
    • 11d Dong X.-Q, Teng H.-L, Wang C.-J. Org. Lett. 2009; 11: 1265
    • 11e Jiang X, Zhang Y, Chan AS. C, Wang R. Org. Lett. 2009; 11: 153
    • 11f Ma Z.-w, Liu Y.-x, Huo L.-j, Gao X, Tao J.-c. Tetrahedron: Asymmetry 2012; 23: 443
    • 11g Dong Z, Qiu G, Zhou H.-B, Dong C. Tetrahedron: Asymmetry 2012; 23: 1550
    • 12a Arrayas RG, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 7674
    • 12b Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications. Dai L.-X, Hou X.-L. Wiley-VCH; 2010
    • 13a Patti A, Pedotti S. Eur. J. Org. Chem. 2014; 624
    • 13b Petruzziello D, Stenta M, Mazzanti A, Cozzi PG. Chem. Eur. J. 2013; 19: 7696
    • 13c Al-Momani LA, Lataifeh A. Inorg. Chim. Acta 2013; 394: 176
  • 14 Villanueva-García F, Reyes P, Pannell KH, Álvarez-Hernández A, Valois I, Juárez-Ruiz JM, Flores-Rizo JO, Peña-Cabrera E. ARKIVOC 2011; (ix): 105
  • 15 Muñiz K, Nieger M. Organometallics 2003; 22: 4616
  • 16 Enantioselective Michael Addition Reactions: General ProcedureBifunctional catalyst 1f (2 mg, 0.0033 mmol, 1 mol%) was added to a solution of nitroalkene (0.33 mmol) in CH2Cl2 (1.5 mL), and the mixture was stirred for 5 min under N2. The 1,3-dicarbonyl compound 3 (0.4 mmol) was then added to the mixture. When the nitroalkene substrate had been consumed (TLC), the mixture was concentrated and then purified by column chromatography to afford give the conjugate addition products 4, 6, and 7.