Synlett 2015; 26(16): 2216-2230
DOI: 10.1055/s-0034-1378865
account
© Georg Thieme Verlag Stuttgart · New York

Acyclic Amino Acid Based Bifunctional Chiral Tertiary Amines, Quaternary Ammoniums and Iminophosphoranes as Organo­catalysts

Xiaowei Zhao
Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. of China   Email: chmjzy@henu.edu.cn
,
Bo Zhu
Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. of China   Email: chmjzy@henu.edu.cn
,
Zhiyong Jiang*
Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, P. R. of China   Email: chmjzy@henu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 30 April 2015

Accepted after revision: 05 June 2015

Publication Date:
25 August 2015 (online)


Abstract

Acyclic amino acids are one of the most ideal chiral scaffolds for the construction of organocatalysts. The development of acyclic amino acid based bifunctional chiral tertiary amines and their powerful catalytic abilities have been demonstrated in many asymmetric reactions. In this account, we summarize asymmetric transformations promoted by bifunctional chiral tertiary amines according to reaction patterns. Moreover, asymmetric reactions mediated by acyclic amino acid derived quaternary ammoniums as phase-transfer catalysts, and acyclic amino acid derived iminophosphoranes as bifunctional superbases are discussed.

1 Introduction

2 Acyclic Amino Acid Derived Chiral Tertiary Amines (CTAs)

2.1 CTA-Catalyzed Asymmetric Conjugate Addition Reactions

2.2 CTA-Catalyzed Asymmetric Aldol Reactions

2.3 CTA-Catalyzed Asymmetric Mannich Reactions

2.4 CTA-Catalyzed Asymmetric Tandem Reactions

3 Acyclic Amino Acid Derived Chiral Quaternary Ammoniums

4 Acyclic Amino Acid Derived Chiral Iminophosphoranes

5 Conclusion and Outlook

 
  • References

    • 1a Berkessel A, Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley-VCH; Weinheim: 2005
    • 1b McGarrigle EM, Aggarwal VK In Enantioselective Organocatalysis . Dalko P. Wiley-VCH; Weinheim: 2007
    • 1c Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko P. Wiley-VCH; Weinheim: 2013
  • 2 MacMillan DW. C. Nature 2008; 455: 304
  • 3 Watson AJ. B, MacMillan DW. C. Catalytic Asymmetric Synthesis . Ojima I. Wiley; Hoboken: 2010: 3rd ed., Chap. 2A, 39-57
  • 5 Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
  • 6 Ishihara K, Nakano K. J. Am. Chem. Soc. 2005; 127: 10504
  • 7 Wang S.-X, Han X, Zhong F, Wang Y, Lu Y. Synlett 2011; 2766
  • 8 Chai Z, Zhao G. Catal. Sci. Technol. 2012; 2: 29
  • 9 Xu J, Fu X, Low R, Goh Y.-P, Jiang Z, Tan C.-H. Chem. Commun. 2008; 5526
    • 10a Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
    • 10b Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
    • 10c Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 10d Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 10e Connon SJ. Chem. Commun. 2008; 2499
    • 10f Yu X, Wang W. Chem. Asian. J. 2008; 3: 516
  • 11 Andrés JM, Manzano R, Pedrosa R. Chem. Eur. J. 2008; 14: 5116
    • 12a Li P, Chai Z, Zhao S.-L, Yang Y.-Q, Wang H.-F, Zheng C.-W, Cai Y.-P, Zhao G, Zhu S.-Z. Chem. Commun. 2009; 7369
    • 12b Zhao S.-L, Zheng C.-W, Wang H.-F, Zhang G. Adv. Synth. Catal. 2009; 351: 2811
    • 12c Wang H.-F, Li P, Cui H.-F, Wang X.-M, Zhang J.-K, Liu W, Zhao G. Tetrahedron 2011; 67: 1774
    • 13a Chen X.-K, Zheng C.-W, Zhao S.-L, Chai Z, Yang Y.-Q, Zhao G, Cao W.-G. Adv. Synth. Catal. 2010; 352: 1648
    • 13b Gao Y, Ren Q, Wang L, Wang J. Chem. Eur. J. 2010; 16: 13068
  • 14 Manzano R, Andrés JM, Álvarez R, Muruzábal MD, de Lera ÁR, Pedrosa R. Chem. Eur. J. 2011; 17: 5931

    • For selected books, see:
    • 15a Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications. Filler R, Kobayashi Y, Yagupolskii LM. Elsevier; Amsterdam: 1993
    • 15b Uneyama K. Organofluorine Chemistry . Blackwell; Oxford: 2006

    • For selected reviews, see:
    • 15c O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 15d Lectard S, Hamashima Y, Sodeoka M. Adv. Synth. Catal. 2010; 352: 2708
    • 15e Cahard D, Xu X, Couve-Bonnaire S, Pannecoucke X. Chem. Soc. Rev. 2010; 39: 558

    • For selected examples, see:
    • 15f He R, Wang X, Hashimoto T, Maruoka K. Angew. Chem. Int. Ed. 2008; 47: 9466
    • 15g Jiang Z, Pan Y, Zhao Y, Ma T, Lee R, Yang Y, Huang K.-W, Wong MW, Tan C.-H. Angew. Chem. Int. Ed. 2009; 48: 3627
    • 15h Jing Z, Liu J, Chin KF, Chen W, Tan C.-H, Jiang Z. Aust. J. Chem. 2014; 67: 1119 ; and references cited therein
  • 16 Cui H.-F, Li P, Wang X.-W, Zhu S.-Z, Zhao G. J. Fluorine Chem. 2012; 133: 120
  • 17 Jörres M, Schiffers I, Atodiresei I, Bolm C. Org. Lett. 2012; 14: 4518
    • 18a Yamada S, Nakayama K, Takayama H. Tetrahedron Lett. 1981; 22: 2591
    • 18b Helaine V, Bolte J. Tetrahedron: Asymmetry 1998; 9: 3855
    • 18c Coutrot P, Claudel S, Didierjean C, Grison C. Bioorg. Med. Chem. Lett. 2006; 16: 417
    • 18d Zan L.-F, Qin J.-C, Zhang Y.-M, Yao Y.-H, Bao H.-Y, Li X. Chem. Pharm. Bull. 2011; 59: 770
    • 18e Wu X, Wang Y, Huang X.-J, Fan C.-L, Wang G.-C, Zhang X.-Q, Zhang Q.-W, Ye W.-C. J. Asian Nat. Prod. Res. 2011; 13: 728
    • 18f Zhang Y.-B, Li W, Yang X.-W. Phytochemistry 2012; 81: 109
  • 19 Trost BM, Dogra K, Franzini M. J. Am. Chem. Soc. 2004; 126: 1944
  • 20 Qiao B, An Y, Liu Q, Yang W, Liu H, Shen J, Yan L, Jiang Z. Org. Lett. 2013; 15: 2358
  • 21 Etxabe J, Izquierdo J, Landa A, Oiarbide M, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 6883
  • 22 Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F. Chem. Rev. 2011; 111: 3076
  • 23 Zhang W, Tan D, Lee R, Tong G, Chen W, Qi B, Huang K.-W, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2012; 51: 10069
  • 24 Luo J, Wang H, Han X, Xu L.-W, Kwiatkowski J, Huang K.-W, Lu Y. Angew. Chem. Int. Ed. 2011; 50: 1861

    • For a selected review, see:
    • 25a Satyamaheshwar P. Curr. Bioact. Compd. 2009; 5: 20

    • For selected examples, see:
    • 25b Ubaidullaev KA, Shakirov R, Yunosov SY. Khim. Prir. Soedin. 1976; 12: 553
    • 25c Rasmussen HB, MacLeod JK. J. Nat. Prod. 1997; 60: 1152
    • 25d Takayama H, Matsuda Y, Masubuchi K, Ishida A, Kitajima M, Aimi N. Tetrahedron 2004; 60: 893
    • 25e Kitajima M, Mori I, Arai K, Kogure N, Takayama H. Tetrahedron Lett. 2006; 47: 3199
    • 25f Carlé JS, Christophersen C. J. Org. Chem. 1981; 46: 3440
    • 25g Hinman RL, Bauman CP. J. Org. Chem. 1964; 29: 2431
    • 25h Galston AW, Chen HR. Plant Physiol. 1965; 40: 699
    • 25i López-Alvarado P, Steinhoff J, Miranda S, Avendaño C, Menéndez JC. Tetrahedron 2009; 65: 1660
  • 26 Zhu B, Zhang W, Lee R, Han Z, Yang W, Tan D, Huang K.-W, Jiang Z. Angew. Chem. Int. Ed. 2013; 52: 6666
    • 27a Han X, Kwiatkowski J, Xue F, Huang K.-W, Lu Y. Angew. Chem. Int. Ed. 2009; 48: 7604
    • 27b Han X, Lee R, Chen T, Luo J, Lu Y, Huang K.-W. Sci. Rep. 2013; 3: 2557
  • 28 Li G.-X, Qu J. Chem. Commun. 2012; 48: 5518
  • 29 Du Z, Siau W.-Y, Wang J. Tetrahedron Lett. 2011; 52: 6137
  • 30 Wang H, Luo J, Han X, Lu Y. Adv. Synth. Catal. 2011; 353: 2971
    • 31a Goss RJ. M, Fuchser J, O’Hagan D. Chem. Commun. 1999; 2255
    • 31b Steel PG. Chem. Commun. 1999; 2257
  • 32 Dou X, Han X, Lu Y. Chem. Eur. J. 2012; 18: 85
  • 33 Dou X, Zhong F, Lu Y. Chem. Eur. J. 2012; 18: 13945
  • 34 Zhao S, Lin J.-B, Zhao Y.-Y, Liang Y.-M, Xu P.-F. Org. Lett. 2014; 16: 1802
  • 35 Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
  • 36 Wang H.-Y, Chai Z, Zhao G. Tetrahedron 2013; 69: 5104
  • 37 Wang H.-Y, Zhang J.-X, Cao D.-D, Zhao G. ACS Catal. 2013; 3: 2218
  • 38 Núñez MG, Farley AJ. M, Dixon DJ. J. Am. Chem. Soc. 2013; 135: 16348
  • 39 Goldys AM, Núñez MG, Dixon DJ. Org. Lett. 2014; 16: 6294