Synlett 2015; 26(09): 1233-1237
DOI: 10.1055/s-0034-1378691
letter
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Catalyzed Addition–Spirocyclization of Arylboronic Esters Containing β-Aryl α,β-Unsaturated Ester Moiety

Takanori Matsuda*
Department of Applied Chemistry, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Email: mtd@rs.tus.ac.jp
,
Satoshi Yasuoka
Department of Applied Chemistry, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Email: mtd@rs.tus.ac.jp
,
Shoichi Watanuki
Department of Applied Chemistry, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Email: mtd@rs.tus.ac.jp
,
Keisuke Fukuhara
Department of Applied Chemistry, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Email: mtd@rs.tus.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 17 January 2015

Accepted after revision: 22 February 2015

Publication Date:
19 March 2015 (online)


Abstract

In this study, we developed a rhodium(I)-catalyzed spiro­cyclization. The reaction includes 1,4-rhodium migration and provides a route for forming spirocyclic 1-indanones.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Ma S, Gu Z. Angew. Chem. Int. Ed. 2005; 44: 7512
    • 1b Shi F, Larock R. Top. Curr. Chem. 2010; 292: 123
    • 2a Oguma K, Miura M, Satoh T, Nomura M. J. Am. Chem. Soc. 2000; 122: 10464
    • 2b Matsuda T, Shigeno M, Murakami M. J. Am. Chem. Soc. 2007; 129: 12086
    • 2c Sasaki K, Nishimura T, Shintani R, Kantchev EA. B, Hayashi T. Chem. Sci. 2012; 3: 1278
    • 2d Sasaki K, Hayashi T. Tetrahedron: Asymmetry 2012; 23: 373
    • 2e Prakash P, Jijy E, Shimi M, Aparna PS, Suresh E, Radhakrishnan KV. RSC Adv. 2013; 3: 19933
    • 2f Shintani R, Iino R, Nozaki K. J. Am. Chem. Soc. 2014; 136: 7849
    • 3a Hayashi T, Inoue K, Taniguchi N, Ogasawara M. J. Am. Chem. Soc. 2001; 123: 9918
    • 3b Miura T, Sasaki T, Nakazawa H, Murakami M. J. Am. Chem. Soc. 2005; 127: 1390
    • 3c Shintani R, Okamoto K, Hayashi T. J. Am. Chem. Soc. 2005; 127: 2872
    • 3d Yamabe H, Mizuno A, Kusama H, Iwasawa N. J. Am. Chem. Soc. 2005; 127: 3248
    • 3e Shintani R, Hayashi T. Org. Lett. 2005; 7: 2071
    • 3f Shintani R, Tsurusaki A, Okamoto K, Hayashi T. Angew. Chem. Int. Ed. 2005; 44: 3909
    • 3g Miura T, Shimada M, Murakami M. Chem. Asian J. 2006; 1: 868
    • 3h Shintani R, Takatsu K, Hayashi T. Angew. Chem. Int. Ed. 2007; 46: 3735
    • 3i Shintani R, Takatsu K, Katoh T, Nishimura T, Hayashi T. Angew. Chem. Int. Ed. 2008; 47: 1447
    • 3j Seiser T, Roth OA, Cramer N. Angew. Chem. Int. Ed. 2009; 48: 6320
    • 3k Shigeno M, Yamamoto T, Murakami M. Chem. Eur. J. 2009; 15: 12929
    • 3l Seiser T, Cramer N. Chem. Eur. J. 2010; 16: 3383
    • 3m Shintani R, Isobe S, Takeda M, Hayashi T. Angew. Chem. Int. Ed. 2010; 49: 3795
    • 3n Seiser T, Cathomen G, Cramer N. Synlett 2010; 1699
    • 3o Shintani R, Hayashi T. Org. Lett. 2011; 13: 350
    • 3p Ishida N, Nečas D, Shimamoto Y, Murakami M. Chem. Lett. 2013; 42: 1076
    • 3q Matsuda T, Watanuki S. Org. Biomol. Chem. 2015; 13: 702
  • 4 Matsuda T, Suda Y, Takahashi A. Chem. Commun. 2012; 48: 2988

    • For analogous 1,3- and 1,5-rhodium migrations, see:
    • 5a Tobisu M, Hasegawa J, Kita Y, Kinuta H, Chatani N. Chem. Commun. 2012; 48: 11437
    • 5b Zhang J, Zhao P, Liu J.-F, Ugrinov A, Pillai AF. X, Sun Z.-M. J. Am. Chem. Soc. 2013; 135: 17270
    • 5c Ishida N, Shimamoto Y, Yano T, Murakami M. J. Am. Chem. Soc. 2013; 135: 19103
  • 6 The corresponding intermolecular reaction was reported, see ref. 3o.

    • For general reviews on rhodium(I)-catalyzed addition reactions of arylboronic acids, see:
    • 7a Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829
    • 7b Miura T, Murakami M. Chem. Commun. 2007; 217
    • 7c Youn SW. Eur. J. Org. Chem. 2009; 2597
    • 7d Edwards HJ, Hargrave JD, Penrose SD, Frost CG. Chem. Soc. Rev. 2010; 39: 2093
    • 7e Tian P, Dong H.-Q, Lin G.-Q. ACS Catal. 2012; 2: 95
    • 8a Lautens M, Mancuso J. Org. Lett. 2002; 4: 2105
    • 8b Lautens M, Mancuso J. J. Org. Chem. 2004; 69: 3478
    • 8c Shintani R, Okamoto K, Hayashi T. Chem. Lett. 2005; 34: 1294
    • 8d Miura T, Murakami M. Org. Lett. 2005; 7: 3339
    • 8e Matsuda T, Makino M, Murakami M. Chem. Lett. 2005; 34: 1416
    • 8f Matsuda T, Shigeno M, Makino M, Murakami M. Org. Lett. 2006; 8: 3379
    • 8g Tseng N.-W, Lautens M. J. Org. Chem. 2009; 74: 1809
    • 8h Shimizu H, Igarashi T, Murakami M. Bull. Korean Chem. Soc. 2010; 31: 1461
    • 8i Gourdet B, Rudkin ME, Lam HW. Org. Lett. 2010; 12: 2554
    • 8j Low DW, Pattison G, Wieczysty MD, Churchill GH. Org. Lett. 2012; 14: 2548
    • 8k Yu Y.-N, Xu M.-H. J. Org. Chem. 2013; 78: 2736
  • 9 Gallego GM, Sarpong R. Chem. Sci. 2012; 3: 1338
  • 10 Substrates 1 and 4 were synthesized by the Horner–­Wadsworth–Emmons reaction of the corresponding ketones, which were prepared according to the literature methods.
    • 11a Zhang N, Hoffman DJ, Gutsche N, Gupta J, Percec V. J. Org. Chem. 2012; 77: 5956
    • 11b Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
  • 12 (E)-Methyl 5-[2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)phenyl]-3-phenylpent-2-enoate (4a): White solid; mp 104–105 °C; 1H NMR (CDCl3, 301 MHz): δ = 0.98 (s, 6 H), 3.01–3.09 (m, 2 H), 3.31–3.40 (m, 2 H), 3.65 (s, 4 H), 3.78 (s, 3 H), 6.08 (s, 1 H), 7.15–7.22 (m, 1 H), 7.32–7.42 (m, 5 H), 7.51–7.57 (m, 2 H), 7.71–7.76 (m, 1 H). 13C NMR (CDCl3, 75.6 MHz): δ = 21.8, 31.5, 34.8, 35.2, 51.1, 72.0, 116.9, 125.1, 126.9, 128.4, 128.7, 129.9, 130.3, 134.8, 141.6, 147.6, 160.8, 166.7. HRMS (ESI) calcd for C23H27BNaO4 [M + Na]+ 401.1895; found: 401.1895. IR: 2960, 1712, 1301, 1161, 766 cm−1. General Procedure for Rhodium-Catalyzed Spirocyclization of Arylboronic Esters: To a Schlenk tube under nitrogen were added [Rh(OH)(cod)]2 (1.2 mg, 2.6 μmol, 5 mol% Rh), 1,2-bis(diphenylphosphino)benzene (DPPBZ, 2.3 mg, 5.2 μmol), arylboronic ester 4 (0.100 mmol), and xylene (1.0 mL). The solution was stirred for 5 min. at rt, and the mixture was heated at 140 °C for 2 h. After cooling to r.t., the reaction mixture was filtered through a plug of Florisil® washing with hexane–EtOAc (3:1), and the filtrate was concentrated. The residue was purified by preparative TLC on silica gel (hexane–EtOAc) to afford 2. 1,1′-Spirobi[indan]-3-one (2a): According to the general procedure, 4a (37.9 mg, 0.100 mmol), [Rh(OH)(cod)]2 (1.2 mg, 2.6 μmol), and DPPBZ (2.3 mg, 5.2 μmol) were treated in xylene (1.0 mL). Purification by preparative TLC on silica gel afforded 2a (19.7 mg, 0.084 mmol, 84%) as a colorless oil. 1H NMR (CDCl3, 300 MHz): δ = 2.37 (ddd, J = 12.7, 7.0, 5.5 Hz, 1 H), 2.52 (dt, J = 12.8, 8.2 Hz, 1 H), 2.85 (d, J = 18.9 Hz, 1 H), 3.00 (d, J = 18.9 Hz, 1 H), 3.10–3.20 (m, 2 H), 6.78 (d, J = 7.2 Hz, 1 H), 7.14 (dt, J = 0.8, 7.4 Hz, 1 H), 7.21 (dd, J = 7.3, 1.0 Hz, 1 H), 7.23–7.29 (m, 1 H), 7.32 (d, J = 7.2 Hz, 1 H), 7.37–7.46 (m, 1 H), 7.54– 7.62 (m, 1 H), 7.75–7.82 (m, 1 H); 13C NMR (CDCl3, 75.5 MHz): δ = 31.3, 42.9, 52.4, 54.5, 122.8, 123.1, 124.6, 125.1, 127.2, 127.3, 127.9, 135.4, 136.1, 143.3, 148.9, 161.5, 205.7. HRMS (ESI) calcd for C17H14NaO [M + Na]+ 257.0937; found: 257.0937. IR: 2948, 1716, 1602, 1236, 758 cm–1.
  • 13 Asymmetric reaction: 4a (37.8 mg, 0.100 mmol), [Rh(OH)(cod)]2 (1.1 mg, 2.4 μmol), and (R)-BINAP (3.1 mg, 5.0 μmol) were reacted in xylene (1.0 mL) at 140 °C. Purification by preparative TLC on silica gel yielded 2a (10.1 mg, 0.043 mmol, 43%); 52% ee determined by HPLC analysis (CHIRALCEL® OJ-H column, hexane–i-PrOH (90:10), 1.0 mL/min, t minor = 7.7 min, t major = 10.0 min).