Semin Musculoskelet Radiol 2014; 18(03): 246-264
DOI: 10.1055/s-0034-1375568
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Spine and Sport

Milko C. de Jonge
1   Department of Radiology, Zuwe Hofpoort Hospital, Woerden, The Netherlands
2   Department of Plastic, Reconstructive and Hand Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
,
Josef Kramer
3   Röntgeninstitut am Schillerpark, Rainerstrasse Linz, Austria
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2014 (online)

Abstract

The spine, in athletes is a relatively frequent origin of problems. Chronic spine problems are much more common compared to acute injuries. Chronic injuries to the spine most often occur in low-contact sports like gymnastics and are most commonly the result of overuse. Acute injuries are more common in high-speed and full contact sports and are traumatic in origin. Injuries to the spinal cord can be devastating but are fortunately very uncommon. Although imaging of the spine appears to be straightforward, any radiologist will acknowledge that the optimal imaging strategy is often unclear due to several reasons. For the cervical spine much has improved since the NEXUS and CCR studies appeared in which clear rules were defined when to image the C-spine in acute trauma situations. For the thoracic and lumbar spines such rules are not defined. Although conventional imaging has long been the primary imaging modality of choice there is ample evidence that this should be abandoned in favor of multidetector CT for the C-spine. This is reflected in the ACR criteria in which conventional imaging of tile C-spine in trauma is rated as the least appropriate imaging method. However, this is not true in children and adolescents although a strict age criterion is not defined. It is also not true for injuries to the thoracic and lumbar spine in which conventional imaging still plays a large role as primary imaging modality followed by evaluation by CT in trauma situations. The role for MRI in acute situations is increasing especially with the increasing use of the TLICS system to classify injuries of the thoracic and lumbar spine in which the evaluation of the integrity of the posterior ligamentous structures is included. For the evaluation of chronic complaints, the roles of CT and MRI are basically reversed in which MRI will become the prime imaging modality of choice after conventional imaging after which CT can be reserved for a selected patient group. The merit of the different imaging modalities will be discussed together with a spectrum of acute and chronic injuries often encountered in the spine in athletes.

 
  • References

  • 1 Ghiselli G, Schaadt G, McAllister DR. On-the-field evaluation of an athlete with a head or neck injury. Clin Sports Med 2003; 22 (3) 445-465
  • 2 Maroon JC, Bailes JE. Athletes with cervical spine injury. Spine 1996; 21 (19) 2294-2299
  • 3 National Spinal Cord Injury Statistical Center. The 2004 Annual Statistical Report for the Model Spinal Cord Injury Care Systems. Birmingham: University of Alabama; 2004. . Available at: https://www.nscisc.uab.edu/PublicDcouments/reports/pdf/2004StatReport.pdf . Accessed on May 8, 2014
  • 4 Proctor MR, Cantu RC. Head and neck injuries in young athletes. Clin Sports Med 2000; 19 (4) 693-715
  • 5 d'Hemecourt PA, Gerbino II PG, Micheli LJ. Back injuries in the young athlete. Clin Sports Med 2000; 19 (4) 663-679
  • 6 Kruse D, Lemmen B. Spine injuries in the sport of gymnastics. Curr Sports Med Rep 2009; 8 (1) 20-28
  • 7 George SZ, Delitto A. Management of the athlete with low back pain. Clin Sports Med 2002; 21 (1) 105-120
  • 8 Hutchinson MR. Low back pain in elite rhythmic gymnasts. Med Sci Sports Exerc 1999; 31 (11) 1686-1688
  • 9 Semon RL, Spengler D. Significance of lumbar spondylolysis in college football players. Spine 1981; 6 (2) 172-174
  • 10 Watkins RG. Lumbar disc injury in the athlete. Clin Sports Med 2002; 21 (1) 147-165 , viii
  • 11 Yang J, Tibbetts AS, Covassin T, Cheng G, Nayar S, Heiden E. Epidemiology of overuse and acute injuries among competitive collegiate athletes. J Athl Train 2012; 47 (2) 198-204
  • 12 Fuller CW, Molloy MG, Bagate C , et al. Consensus statement on injury definitions and data collection procedures for studies of injuries in rugby union. Br J Sports Med 2007; 41 (5) 328-331
  • 13 Maxfield BA. Sports-related injury of the pediatric spine. Radiol Clin North Am 2010; 48 (6) 1237-1248
  • 14 Sundgren PC, Philipp M, Maly PV. Spinal trauma. Neuroimaging Clin N Am 2007; 17 (1) 73-85
  • 15 Murthy NS. Imaging of stress fractures of the spine. Radiol Clin North Am 2012; 50 (4) 799-821
  • 16 Hoffman JR, Mower WR, Wolfson AB, Todd KH, Zucker MI ; National Emergency X-Radiography Utilization Study Group. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. N Engl J Med 2000; 343 (2) 94-99 Erratum in: N Engl J Med 2001;344(6):464
  • 17 Hoffman JR, Wolfson AB, Todd K, Mower WR. Selective cervical spine radiography in blunt trauma: methodology of the National Emergency X-Radiography Utilization Study (NEXUS). Ann Emerg Med 1998; 32 (4) 461-469
  • 18 Stiell IG, Wells GA, Vandemheen KL , et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA 2001; 286 (15) 1841-1848
  • 19 Stiell IG, Clement CM, McKnight RD , et al. The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with trauma. N Engl J Med 2003; 349 (26) 2510-2518
  • 20 Viccellio P, Simon H, Pressman BD, Shah MN, Mower WR, Hoffman JR ; NEXUS Group. A prospective multicenter study of cervical spine injury in children. Pediatrics 2001; 108 (2) E20
  • 21 Leonard JC, Kuppermann N, Olsen C , et al; Pediatric Emergency Care Applied Research Network. Factors associated with cervical spine injury in children after blunt trauma. Ann Emerg Med 2011; 58 (2) 145-155
  • 22 Streitwieser DR, Knopp R, Wales LR, Williams JL, Tonnemacher K. Accuracy of standard radiographic views in detecting cervical spine fractures. Ann Emerg Med 1983; 12 (9) 538-542
  • 23 Radhesh R, Cassar-Pullicino VN. Spine. In: Karantanas AH, , ed. Sports Injuries in Children and Adolescents. Berlin, Germany: Springer-Verlag; 2011
  • 24 Bailitz J, Starr F, Beecroft M , et al. CT should replace three-view radiographs as the initial screening test in patients at high, moderate, and low risk for blunt cervical spine injury: a prospective comparison. J Trauma 2009; 66 (6) 1605-1609
  • 25 Brown CV, Antevil JL, Sise MJ, Sack DI. Spiral computed tomography for the diagnosis of cervical, thoracic, and lumbar spine fractures: its time has come. J Trauma 2005; 58 (5) 890-895 , discussion 895–896
  • 26 Holmes JF, Akkinepalli R. Computed tomography versus plain radiography to screen for cervical spine injury: a meta-analysis. J Trauma 2005; 58 (5) 902-905
  • 27 Frush DP. Review of radiation issues for computed tomography. Semin Ultrasound CT MR 2004; 25 (1) 17-24
  • 28 Hernandez JA, Chupik C, Swischuk LE. Cervical spine trauma in children under 5 years: productivity of CT. Emerg Radiol 2004; 10 (4) 176-178
  • 29 Brohi K, Healy M, Fotheringham T , et al. Helical computed tomographic scanning for the evaluation of the cervical spine in the unconscious, intubated trauma patient. J Trauma 2005; 58 (5) 897-901
  • 30 Como JJ, Leukhardt WH, Anderson JS, Wilczewski PA, Samia H, Claridge JA. Computed tomography alone may clear the cervical spine in obtunded blunt trauma patients: a prospective evaluation of a revised protocol. J Trauma 2011; 70 (2) 345-349 ; discussion 349–351
  • 31 Menaker J, Stein DM, Philp AS, Scalea TM. 40-slice multidetector CT: is MRI still necessary for cervical spine clearance after blunt trauma?. Am Surg 2010; 76 (2) 157-163
  • 32 Tomycz ND, Chew BG, Chang YF , et al. MRI is unnecessary to clear the cervical spine in obtunded/comatose trauma patients: the four-year experience of a level I trauma center. J Trauma 2008; 64 (5) 1258-1263
  • 33 Como JJ, Thompson MA, Anderson JS , et al. Is magnetic resonance imaging essential in clearing the cervical spine in obtunded patients with blunt trauma?. J Trauma 2007; 63 (3) 544-549
  • 34 Hogan GJ, Mirvis SE, Shanmuganathan K, Scalea TM. Exclusion of unstable cervical spine injury in obtunded patients with blunt trauma: is MR imaging needed when multi-detector row CT findings are normal?. Radiology 2005; 237 (1) 106-113
  • 35 Panczykowski DM, Tomycz ND, Okonkwo DO. Comparative effectiveness of using computed tomography alone to exclude cervical spine injuries in obtunded or intubated patients: meta-analysis of 14,327 patients with blunt trauma. J Neurosurg 2011; 115 (3) 541-549
  • 36 Schoenfeld AJ, Bono CM, McGuire KJ, Warholic N, Harris MB. Computed tomography alone versus computed tomography and magnetic resonance imaging in the identification of occult injuries to the cervical spine: a meta-analysis. J Trauma 2010; 68 (1) 109-113; discussion 113–114
  • 37 Diaz Jr JJ, Aulino JM, Collier B , et al. The early work-up for isolated ligamentous injury of the cervical spine: does computed tomography scan have a role?. J Trauma 2005; 59 (4) 897-903 ; discussion 903–904
  • 38 Menaker J, Philp A, Boswell S, Scalea TM. Computed tomography alone for cervical spine clearance in the unreliable patient—are we there yet?. J Trauma 2008; 64 (4) 898-903 ; discussion 903–904
  • 39 Vaccaro AR, Lehman Jr RA, Hurlbert RJ , et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 2005; 30 (20) 2325-2333
  • 40 Flanders AE, Croul SE. Spinal trauma. In: Atlas SW, , ed. Magnetic Resonance Imaging of the Brain and Spine. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2002: 1769-1824
  • 41 Oner FC, van Gils AP, Dhert WJ, Verbout AJ. MRI findings of thoracolumbar spine fractures: a categorisation based on MRI examinations of 100 fractures. Skeletal Radiol 1999; 28 (8) 433-443
  • 42 Petersilge CA, Pathria MN, Emery SE, Masaryk TJ. Thoracolumbar burst fractures: evaluation with MR imaging. Radiology 1995; 194 (1) 49-54
  • 43 Brightman RP, Miller CA, Rea GL, Chakeres DW, Hunt WE. Magnetic resonance imaging of trauma to the thoracic and lumbar spine. The importance of the posterior longitudinal ligament. Spine 1992; 17 (5) 541-550
  • 44 Haba H, Taneichi H, Kotani Y , et al. Diagnostic accuracy of magnetic resonance imaging for detecting posterior ligamentous complex injury associated with thoracic and lumbar fractures. J Neurosurg 2003; 99 (1, Suppl): 20-26
  • 45 Terk MR, Hume-Neal M, Fraipont M, Ahmadi J, Colletti PM. Injury of the posterior ligament complex in patients with acute spinal trauma: evaluation by MR imaging. AJR Am J Roentgenol 1997; 168 (6) 1481-1486
  • 46 van Middendorp JJ, Patel AA, Schuetz M, Joaquim AF. The precision, accuracy and validity of detecting posterior ligamentous complex injuries of the thoracic and lumbar spine: a critical appraisal of the literature. Eur Spine J 2013; 22 (3) 461-474
  • 47 Soder RB, Mizerkowski MD, Petkowicz R, Baldisserotto M. MRI of the knee in asymptomatic adolescent swimmers: a controlled study. Br J Sports Med 2012; 46 (4) 268-272
  • 48 Soder RB, Simões JD, Soder JB, Baldisserotto M. MRI of the knee joint in asymptomatic adolescent soccer players: a controlled study. AJR Am J Roentgenol 2011; 196 (1) W61-5
  • 49 Paajanen H, Hermunen H, Karonen J. Effect of heavy training in contact sports on MRI findings in the pubic region of asymptomatic competitive athletes compared with non-athlete controls. Skeletal Radiol 2011; 40 (1) 89-94
  • 50 Stahl R, Luke A, Ma CB , et al. Prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects—a 3.0 T magnetic resonance imaging study. Skeletal Radiol 2008; 37 (7) 627-638
  • 51 Zubler V, Mengiardi B, Pfirrmann CW , et al. Bone marrow changes on STIR MR images of asymptomatic feet and ankles. Eur Radiol 2007; 17 (12) 3066-3072
  • 52 Major NM, Helms CA. MR imaging of the knee: findings in asymptomatic collegiate basketball players. AJR Am J Roentgenol 2002; 179 (3) 641-644
  • 53 Alyas F, Turner M, Connell D. MRI findings in the lumbar spines of asymptomatic, adolescent, elite tennis players. Br J Sports Med 2007; 41 (11) 836-841 ; discussion 841
  • 54 Maurer M, Soder RB, Baldisserotto M. Spine abnormalities depicted by magnetic resonance imaging in adolescent rowers. Am J Sports Med 2011; 39 (2) 392-397
  • 55 Kraft CN, Pennekamp PH, Becker U , et al. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline. Am J Sports Med 2009; 37 (11) 2205-2213
  • 56 Kewalramani LS, Tori JA. Spinal cord trauma in children. Neurologic patterns, radiologic features, and pathomechanics of injury. Spine 1980; 5 (1) 11-18
  • 57 Dietrich AM, Ginn-Pease ME, Bartkowski HM, King DR. Pediatric cervical spine fractures: predominantly subtle presentation. J Pediatr Surg 1991; 26 (8) 995-999 ; discussion 999–1000
  • 58 Zmurko MG, Tannoury TY, Tannoury CA, Anderson DG. Cervical sprains, disc herniations, minor fractures, and other cervical injuries in the athlete. Clin Sports Med 2003; 22 (3) 513-521
  • 59 Bagley LJ. Imaging of spinal trauma. Radiol Clin North Am 2006; 44 (1) 1-12 , vii
  • 60 Caine DJ, Nassar L. Gymnastics injuries. Med Sport Sci 2005; 48: 18-58
  • 61 Kewalramani LS, Kraus JF. Acute spinal-cord lesions from diving—epidemiological and clinical features. West J Med 1977; 126 (5) 353-361
  • 62 Torg JS, Naranja Jr RJ, Pavlov H, Galinat BJ, Warren R, Stine RA. The relationship of developmental narrowing of the cervical spinal canal to reversible and irreversible injury of the cervical spinal cord in football players. J Bone Joint Surg Am 1996; 78 (9) 1308-1314
  • 63 Gundry CR, Fritts Jr HM. MR imaging of the spine in sports injuries. Magn Reson Imaging Clin N Am 1999; 7 (1) 85-103
  • 64 Ronnen HR, de Korte PJ, Brink PR, van der Bijl HJ, Tonino AJ, Franke CL. Acute whiplash injury: is there a role for MR imaging?—a prospective study of 100 patients. Radiology 1996; 201 (1) 93-96
  • 65 Fleck SK, Langner S, Baldauf J, Kirsch M, Rosenstengel C, Schroeder HW. Blunt craniocervical artery injury in cervical spine lesions: the value of CT angiography. Acta Neurochir (Wien) 2010; 152 (10) 1679-1686
  • 66 Fleck SK, Langner S, Baldauf J, Kirsch M, Kohlmann T, Schroeder HW. Incidence of blunt craniocervical artery injuries: use of whole-body computed tomography trauma imaging with adapted computed tomography angiography. Neurosurgery 2011; 69 (3) 615-623 ; discussion 623–624
  • 67 Fassett DR, Dailey AT, Vaccaro AR. Vertebral artery injuries associated with cervical spine injuries: a review of the literature. J Spinal Disord Tech 2008; 21 (4) 252-258
  • 68 Inamasu J, Guiot BH. Vertebral artery injury after blunt cervical trauma: an update. Surg Neurol 2006; 65 (3) 238-245 ; discussion 245–246
  • 69 Cogbill TH, Moore EE, Meissner M , et al. The spectrum of blunt injury to the carotid artery: a multicenter perspective. J Trauma 1994; 37 (3) 473-479
  • 70 Mutze S, Rademacher G, Matthes G, Hosten N, Stengel D. Blunt cerebrovascular injury in patients with blunt multiple trauma: diagnostic accuracy of duplex Doppler US and early CT angiography. Radiology 2005; 237 (3) 884-892
  • 71 Shah GV, Quint DJ, Trobe JD. Magnetic resonance imaging of suspected cervicocranial arterial dissections. J Neuroophthalmol 2004; 24 (4) 315-318
  • 72 Berne JD, Norwood SH, McAuley CE, Villareal DH. Helical computed tomographic angiography: an excellent screening test for blunt cerebrovascular injury. J Trauma 2004; 57 (1) 11-17 ; discussion 17–19
  • 73 Bub LD, Hollingworth W, Jarvik JG, Hallam DK. Screening for blunt cerebrovascular injury: evaluating the accuracy of multidetector computed tomographic angiography. J Trauma 2005; 59 (3) 691-697
  • 74 Schneidereit NP, Simons R, Nicolaou S , et al. Utility of screening for blunt vascular neck injuries with computed tomographic angiography. J Trauma 2006; 60 (1) 209-215; discussion 215–216
  • 75 Torg JS. Epidemiology, pathomechanics, and prevention of football-induced cervical spinal cord trauma. Exerc Sport Sci Rev 1992; 20: 321-338
  • 76 Winklhofer S, Thekkumthala-Sommer M, Schmidt D , et al. Magnetic resonance imaging frequently changes classification of acute traumatic thoracolumbar spine injuries. Skeletal Radiol 2013; 42 (6) 779-786
  • 77 Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res 1984; (189) 65-76
  • 78 Crim JR. Winter sports injuries. The 2002 Winter Olympics experience and a review of the literature. Magn Reson Imaging Clin N Am 2003; 11 (2) 311-321
  • 79 Floyd T. Alpine skiing, snowboarding, and spinal trauma. Arch Orthop Trauma Surg 2001; 121 (8) 433-436
  • 80 Gertzbein SD, Khoury D, Bullington A, St John TA, Larson AI. Thoracic and lumbar fractures associated with skiing and snowboarding injuries according to the AO Comprehensive Classification. Am J Sports Med 2012; 40 (8) 1750-1754
  • 81 Borenstein DG, O'Mara Jr JW, Boden SD , et al. The value of magnetic resonance imaging of the lumbar spine to predict low-back pain in asymptomatic subjects : a seven-year follow-up study. J Bone Joint Surg Am 2001; 83-A (9) 1306-1311
  • 82 Baranto A, Hellström M, Cederlund CG, Nyman R, Swärd L. Back pain and MRI changes in the thoraco-lumbar spine of top athletes in four different sports: a 15-year follow-up study. Knee Surg Sports Traumatol Arthrosc 2009; 17 (9) 1125-1134
  • 83 Matsumoto M, Okada E, Ichihara D , et al. Age-related changes of thoracic and cervical intervertebral discs in asymptomatic subjects. Spine 2010; 35 (14) 1359-1364
  • 84 Scheuermann HW. Kyphosis dorsalis juvenilis. Z Orthop Ihre Grenzgeb 1921; 41: 305
  • 85 Butler RW. The nature and significance of vertebral osteochondritis. Proc R Soc Med 1955; 48 (11) 895-902
  • 86 Edgren W, Vainio S. Osteochondrosis juvenilis lumbalis. Acta Chir Scand Suppl 1957; 227: 1-47
  • 87 Greene TL, Hensinger RN, Hunter LY. Back pain and vertebral changes simulating Scheuermann's disease. J Pediatr Orthop 1985; 5 (1) 1-7
  • 88 Blumenthal SL, Roach J, Herring JA. Lumbar Scheuermann's. A clinical series and classification. Spine 1987; 12 (9) 929-932
  • 89 Summers BN, Singh JP, Manns RA. The radiological reporting of lumbar Scheuermann's disease: an unnecessary source of confusion amongst clinicians and patients. Br J Radiol 2008; 81 (965) 383-385
  • 90 Swärd L, Hellström M, Jacobsson B, Nyman R, Peterson L. Disc degeneration and associated abnormalities of the spine in elite gymnasts. A magnetic resonance imaging study. Spine 1991; 16 (4) 437-443
  • 91 Wood KB, Garvey TA, Gundry C, Heithoff KB. Magnetic resonance imaging of the thoracic spine. Evaluation of asymptomatic individuals. J Bone Joint Surg Am 1995; 77 (11) 1631-1638
  • 92 Jones GT, Macfarlane GJ. Epidemiology of low back pain in children and adolescents. Arch Dis Child 2005; 90 (3) 312-316
  • 93 Purcell L, Micheli L. Low back pain in young athletes. Sports Health 2009; 1 (3) 212-222
  • 94 Ghosh P ed. The Biology of the Intervertebral Disc. Vol 2. Boca Raton, FL: CRC Press; 1988
  • 95 Koyama K, Nakazato K, Min S , et al. COL11A1 gene is associated with limbus vertebra in gymnasts. Int J Sports Med 2012; 33 (7) 586-590
  • 96 Meyerding HW. Spondylolisthesis. Surg Gynecol Obstet 1932; 54: 371-377
  • 97 Rieger M, Mallouhi A, El Attal R , et al. Akutdiagnostik des Wirbelsäulentrauma. Radiologie 2006; 46: 527-544
  • 98 Rossi F. Spondylolysis, spondylolisthesis and sports. J Sports Med Phys Fitness 1978; 18 (4) 317-340
  • 99 Commandre FA, Taillan B, Gagnerie F, Zakarian H, Lescourgues M, Fourre JM. Spondylolysis and spondylolisthesis in young athletes: 28 cases. J Sports Med Phys Fitness 1988; 28 (1) 104-107
  • 100 Ahn PG, Yoon DH, Shin HC , et al. Cervical spondylolysis: three cases and a review of the current literature. Spine 2010; 35 (3) E80-E83
  • 101 Forsberg DA, Martinez S, Vogler III JB, Wiener MD. Cervical spondylolysis: imaging findings in 12 patients. AJR Am J Roentgenol 1990; 154 (4) 751-755
  • 102 Hollenberg GM, Beattie PF, Meyers SP, Weinberg EP, Adams MJ. Stress reactions of the lumbar pars interarticularis: the development of a new MRI classification system. Spine 2002; 27 (2) 181-186
  • 103 Dunn AJ, Campbell RS, Mayor PE, Rees D. Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis. Skeletal Radiol 2008; 37 (5) 443-450
  • 104 Libson E, Bloom RA. Anteroposterior angulated view. A new radiographic technique for the evaluation of spondylolysis. Radiology 1983; 149 (1) 315-316
  • 105 Amato M, Totty WG, Gilula LA. Spondylolysis of the lumbar spine: demonstration of defects and laminal fragmentation. Radiology 1984; 153 (3) 627-629
  • 106 Saifuddin A, White J, Tucker S, Taylor BA. Orientation of lumbar pars defects: implications for radiological detection and surgical management. J Bone Joint Surg Br 1998; 80 (2) 208-211
  • 107 Beck NA, Miller R, Baldwin K , et al. Do oblique views add value in the diagnosis of spondylolysis in adolescents?. J Bone Joint Surg Am 2013; 95 (10) e65
  • 108 Miller R, Beck NA, Sampson NR, Zhu X, Flynn JM, Drummond D. Imaging modalities for low back pain in children: a review of spondyloysis and undiagnosed mechanical back pain. J Pediatr Orthop 2013; 33 (3) 282-288
  • 109 Campbell RS, Grainger AJ, Hide IG, Papastefanou S, Greenough CG. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI. Skeletal Radiol 2005; 34 (2) 63-73
  • 110 Long G, Cooper JR, Gibbon WW. Magnetic resonance imaging of injuries in the child athlete. Clin Radiol 1999; 54 (12) 781-791
  • 111 Orchard JW, James T, Portus MR. Injuries to elite male cricketers in Australia over a 10-year period. J Sci Med Sport 2006; 9 (6) 459-467
  • 112 Cooper KL, Beabout JW, Swee RG. Insufficiency fractures of the sacrum. Radiology 1985; 156 (1) 15-20
  • 113 Eller DJ, Katz DS, Bergman AG, Fredericson M, Beaulieu CF. Sacral stress fractures in long-distance runners. Clin J Sport Med 1997; 7 (3) 222-225
  • 114 Alyas F, Turner M, Connell D. MRI findings in the lumbar spines of asymptomatic, adolescent, elite tennis players. Br J Sports Med 2007; 41 (11) 836-841 ; discussion 841
  • 115 Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med 1997; 16 (2) 291-306
  • 116 Bennett DL, Nassar L, DeLano MC. Lumbar spine MRI in the elite-level female gymnast with low back pain. Skeletal Radiol 2006; 35 (7) 503-509
  • 117 Cooke PM, Lutz GE. Internal disc disruption and axial back pain in the athlete. Phys Med Rehabil Clin N Am 2000; 11 (4) 837-865
  • 118 Ranson CA, Burnett AF, Kerslake RW. Injuries to the lower back in elite fast bowlers: acute stress changes on MRI predict stress fracture. J Bone Joint Surg Br 2010; 92 (12) 1664-1668
  • 119 Sairyo K, Katoh S, Takata Y , et al. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents: a clinical and biomechanical study. Spine 2006; 31 (2) 206-211
  • 120 Salminen JJ, Erkintalo MO, Pentti J, Oksanen A, Kormano MJ. Recurrent low back pain and early disc degeneration in the young. Spine 1999; 24 (13) 1316-1321
  • 121 Lundin O, Hellström M, Nilsson I, Swärd L. Back pain and radiological changes in the thoraco-lumbar spine of athletes. A long-term follow-up. Scand J Med Sci Sports 2001; 11 (2) 103-109
  • 122 Swärd L. The thoracolumbar spine in young elite athletes. Current concepts on the effects of physical training. Sports Med 1992; 13 (5) 357-364
  • 123 Khan N, Husain S, Haak M. Thoracolumbar injuries in the athlete. Sports Med Arthrosc 2008; 16 (1) 16-25