Subscribe to RSS
DOI: 10.1055/s-0034-1372630
Mehrkanal-Nahinfrarotspektroskopie zur Charakterisierung der kortikalen Perfusion
Multi-Channel Near Infrared Spectroscopy for Characterisation of Cortical PerfusionPublication History
Publication Date:
29 September 2014 (online)
Zusammenfassung
Die Nahinfrarotspektroskopie (NIRS) erlaubt unter anderem die nichtinvasive Bestimmung der kortikalen Konzentration von oxy- und deoxygeniertem Hämoglobin. Insbesondere moderne Mehrkanalsysteme werden daher alternativ zur funktionellen Kernspintomografie für die Darstellung aufgabenspezifischer Aktivierungsmuster des zerebralen Kortex genutzt. Durch eine Bolusapplikation fluoreszierender Farbstoffe als exogenes Kontrastmittel lassen sich allerdings auch hier perfusionsverwandte Parameter reproduzierbar bestimmen. Begünstigt wird dies durch das hohe zeitliche Auflösungsvermögen der Nahinfrarotspektroskopie im Vergleich zu klassischen Schnittbildverfahren. In dieser NIRS-Studie erfolgte nach Bolusapplikation von Indocyaningrün die Bestimmung der Time-to-peak (TTP) bei jeweils 10 gesunden Probanden und Patienten mit einer einseitigen hochgradigen Stenose bzw. segmentalem Verschluss der A. cerebri media. In der Patientengruppe zeigte sich auf der erkrankten Seite in 9 der 10 Fälle eine TTP-Verlängerung, die für die gesamte Gruppe im Mittel 0,44 s betrug. In der Kontrollgruppe fand sich ein mittlerer Seitenunterschied von 0,12 s bei statistisch signifikanter Reproduzierbarkeit der Ergebnisse in 2 aufeinander Zusammen folgenden Messungen. Die lineare Korrelation zu TTP-Werten, die für einen Patienten zusätzlich durch MRT-Perfusionsbildgebung bestimmt wurden, betrug 0,61 (p<0,001). Darüber hinaus fand sich ein statistisch signifikanter Zusammenhang zwischen der distal des Strömungshindernisses duplexsonografisch gemessenen reziproken Strömungsgeschwindigkeit und der durch Nahinfrarotspektroskopie bestimmten mittleren TTP im zentralen Stromgebiet der A. cerebrimedia (r=0,81, p=0,042). Die Ergebnisse der vorliegenden Studie lassen annehmen, dass die Mehrkanal-Nahinfrarotspektroskopie sensitiv ist für Veränderungen der kortikalen Perfusion, wie sie z. B. infolge einer Stenose oder Okklusion einer hirnzuführenden Arterie auftreten können. Das Verfahren stellt unter Umständen eine weitere Möglichkeit zur klinischen Evaluation betroffener Patienten dar.
Abstract
Near-infrared spectroscopy (NIRS) allows the cortical concentrations of oxy- and deoxygenated haemoglobin to be determined in a non-invasive fashion. Therefore modern multi-channel systems provide an alternative to functional magnetic resonance imaging for assessing task-related cortical patterns of activation. Moreover, here too bolus administration of exogenous contrast media facilitates the measurement of perfusion-related parameters. Sampling rates of up to 10 Hz provide a temporal accuracy that is difficult to achieve by the use of tomographic imaging modalities. In the present study time-to-peak (TTP) maps were acquired by multi-channel near-infrared spectroscopy after bolus administration of indocyanine green in 10 healthy controls and 10 patients suffering from unilateral severe stenosis or occlusion of the middle cerebral artery. In 9 of these patients TTP was increased on the affected hemisphere. Mean difference in TTP between affected and unaffected hemisphere was 0.44 s (p<0.05) as compared to a mean lateral difference of 0.12 s found in the controls. A linear correlation of 0.61 between TTP values determined by NIRS and dynamic susceptibility MRI in one patient was found to be statistically significant (p<0.001). Furthermore, a statistically significant correlation between reciprocal post-stenotic flow velocity, as determined by transcranial duplex sonography, and NIRS-TTP in the core distribution of the middle cerebral artery could be established (r=0.81, p=0.042). The results of our study suggest that multi-channel near-infrared spectroscopy is sensitive to changes in cortical perfusion as found, e. g., in stenosis or occlusion of cerebral arteries. This technique might therefore provide clinical benefit in monitoring patients suffering from cerebrovascular disease.
-
Literatur
- 1 Cui X, Bray S, Bryant DM et al. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage 2011; 54: 2808-2821
- 2 Eda H. Near-infrared spectroscopy in studies of brain oxygenation. Current pharmaceutical biotechnology 2013; 14: 167-171
- 3 Ghosh A, Elwell C, Smith M. Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesthesia and analgesia 2012; 115: 1373-1383
- 4 Terborg C, Groschel K, Petrovitch A et al. Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy. European neurology 2009; 62: 338-343
- 5 Steinkellner O, Gruber C, Wabnitz H et al. Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke. Journal of biomedical optics 2010; 15: 061708
- 6 Oldag A, Goertler M, Bertz AK et al. Assessment of cortical hemodynamics by multichannel near-infrared spectroscopy in steno-occlusive disease of the middle cerebral artery. Stroke 2012; 43: 2980-2985
- 7 Terborg C, Bramer S, Harscher S et al. Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green. Journal of neurology, neurosurgery, and psychiatry 2004; 75: 38-42
- 8 Heiss WD. Ischemic penumbra: evidence from functional imaging in man. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 2000; 20: 1276-1293
- 9 Chen JJ, Rosas HD, Salat DH. The relationship between cortical blood flow and sub-cortical white-matter health across the adult age span. PloS one 2013; 8: e56733
- 10 Baumgartner RW, Mattle HP, Schroth G. Assessment of ≥ 50% and <50% Intracranial Stenoses by Transcranial Color-Coded Duplex Sonography. Stroke 1999; 30: 87-92
- 11 Widder B, Paulat K, Hackspacher J et al. Transcranial Doppler CO2 test for the detection of hemodynamically critical carotid artery stenoses and occlusions. European archives of psychiatry and neurological sciences 1986; 236: 162-168
- 12 Perrey S. Non-invasive NIR spectroscopy of human brain function during exercise. Methods 2008; 45: 289-299
- 13 Klem GH, Luders HO, Jasper HH et al. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and clinical neurophysiology Supplement 1999; 52: 3-6
- 14 Landsman ML, Kwant G, Mook GA et al. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. Journal of applied physiology 1976; 40: 575-583
- 15 Yoneya S, Komatsu Y, Mori K et al. The improved image of indocyanine green angiography in young healthy volunteers. Retina 1998; 18: 30-36
- 16 Lau AY, Wong EH, Wong A et al. Significance of good collateral compensation in symptomatic intracranial atherosclerosis. Cerebrovascular diseases 2012; 33: 517-524
- 17 Liebeskind DS, Cotsonis GA, Saver JL et al. Collaterals dramatically alter stroke risk in intracranial atherosclerosis. Annals of neurology 2011; 69: 963-974
- 18 Blaser T, Hofmann K, Buerger T et al. Risk of stroke, transient ischemic attack, and vessel occlusion before endarterectomy in patients with symptomatic severe carotid stenosis. Stroke 2002; 33: 1057-1062
- 19 Ogasawara K, Ogawa A, Terasaki K et al. Use of cerebrovascular reactivity in patients with symptomatic major cerebral artery occlusion to predict 5-year outcome: comparison of xenon-133 and iodine-123-IMP single-photon emission computed tomography. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 2002; 22: 1142-1148
- 20 Wintermark M, Sesay M, Barbier E et al. Comparative overview of brain perfusion imaging techniques. Stroke 2005; 36: e83-e99
- 21 Knutsson L, Stahlberg F, Wirestam R. Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magma 2010; 23: 1-21
- 22 Olivot JM, Mlynash M, Thijs VN et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009; 40: 469-475
- 23 Sobesky J, Zaro Weber O, Lehnhardt FG et al. Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke 2004; 35: 2843-2847
- 24 Asdaghi N, Hill MD, Coulter JI et al. Perfusion MR predicts outcome in high-risk transient ischemic attack/minor stroke: a derivation-validation study. Stroke 2013; 44: 2486-2492
- 25 Bokkers RP, van Laar PJ, van de Ven KC et al. Arterial spin-labeling MR imaging measurements of timing parameters in patients with a carotid artery occlusion. AJNR American journal of neuroradiology 2008; 29: 1698-1703
- 26 Hermier M, Ibrahim AS, Wiart M et al. The delayed perfusion sign at MRI. Journal of neuroradiology Journal de neuroradiologie 2003; 30: 172-179
- 27 van der Zwan A, Hillen B, Tulleken CA et al. A quantitative investigation of the variability of the major cerebral arterial territories. Stroke 1993; 24: 1951-1959
- 28 van Laar PJ, Hendrikse J, Golay X et al. In vivo flow territory mapping of major brain feeding arteries. NeuroImage 2006; 29: 136-144
- 29 Choi JW, Kim JK, Choi BS et al. Angiographic pattern of symptomatic severe M1 stenosis: comparison with presenting symptoms, infarct patterns, perfusion status, and outcome after recanalization. Cerebrovascular diseases 2010; 29: 297-303
- 30 Okamoto M, Dan H, Sakamoto K et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. NeuroImage 2004; 21: 99-111
- 31 Bein B, Meybohm P, Cavus E et al. A comparison of transcranial Doppler with near infrared spectroscopy and indocyanine green during hemorrhagic shock: a prospective experimental study. Critical care 2006; 10: R18