Semin Liver Dis 2013; 33(04): 312-320
DOI: 10.1055/s-0033-1358521
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Lipid Droplet as a Potential Therapeutic Target in NAFLD

Vera J. Goh
1   Signature Research Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore
,
David L. Silver
1   Signature Research Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore
› Author Affiliations
Further Information

Publication History

Publication Date:
12 November 2013 (online)

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a growing problem worldwide. Nonalcoholic fatty liver disease is characterized by an abnormal accumulation of triglyceride-rich lipid droplets (LDs) in the liver, which can lead to liver inflammation and metabolic disturbances. Lipid droplets are dynamic organelles that have recently gained considerable scientific interest. Their formation and growth are regulated processes requiring the participation of many endoplasmic reticulum- (ER-) and LD-associated proteins, which may serve as potential therapeutic targets for NAFLD. Protein families such as fat-inducing transmembrane proteins 1 and 2 (FITM1/FIT1 and FITM2/FIT2), the CIDE family of proteins, and the perilipin family, play important roles in LD biology. In this review, the authors discuss current views on LD formation and growth, and how various proteins may affect LD metabolism and lipoprotein assembly in the pathogenesis of NAFLD.

 
  • References

  • 1 Lazo M, Hernaez R, Eberhardt MS , et al. Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Epidemiol 2013; 178 (1) 38-45
  • 2 Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 2011; 34 (3) 274-285
  • 3 Souza MR, Diniz MdeF, Medeiros-Filho JE, Araújo MS. Metabolic syndrome and risk factors for non-alcoholic fatty liver disease. Arq Gastroenterol 2012; 49 (1) 89-96
  • 4 Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 2012; 55 (4) 885-904
  • 5 Mark N, de Alwis W, Day CP. Current and future therapeutic strategies in NAFLD. Curr Pharm Des 2010; 16 (17) 1958-1962
  • 6 Nakajima K. Multidisciplinary pharmacotherapeutic options for nonalcoholic Fatty liver disease. Int J Hepatol 2012; 2012: 950693
  • 7 Eguchi A, Povero D, Alkhouri N, Feldstein AE. Novel therapeutic targets for nonalcoholic fatty liver disease. Expert Opin Ther Targets 2013; 17 (7) 773-779
  • 8 Lomonaco R, Sunny NE, Bril F, Cusi K. Nonalcoholic fatty liver disease: current issues and novel treatment approaches. Drugs 2013; 73 (1) 1-14
  • 9 Xiao J, Guo R, Fung ML, Liong EC, Tipoe GL. Therapeutic approaches to non-alcoholic fatty liver disease: past achievements and future challenges. Hepatobiliary Pancreat Dis Int 2013; 12 (2) 125-135
  • 10 Welsh JA, Karpen S, Vos MB. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988-1994 to 2007-2010. J Pediatr 2013; 162 (3) 496-500 , e1
  • 11 Perlemuter G, Bigorgne A, Cassard-Doulcier AM, Naveau S. Nonalcoholic fatty liver disease: from pathogenesis to patient care. Nat Clin Pract Endocrinol Metab 2007; 3 (6) 458-469
  • 12 Byrne CD, Olufadi R, Bruce KD, Cagampang FR, Ahmed MH. Metabolic disturbances in non-alcoholic fatty liver disease. Clin Sci (Lond) 2009; 116 (7) 539-564
  • 13 Smith BW, Adams LA. Non-alcoholic fatty liver disease. Crit Rev Clin Lab Sci 2011; 48 (3) 97-113
  • 14 Karlas T, Wiegand J, Berg T. Gastrointestinal complications of obesity: non-alcoholic fatty liver disease (NAFLD) and its sequelae. Best Pract Res Clin Endocrinol Metab 2013; 27 (2) 195-208
  • 15 Tuyama AC, Chang CY. Non-alcoholic fatty liver disease. J Diabetes 2012; 4 (3) 266-280
  • 16 Moore JB. Non-alcoholic fatty liver disease: the hepatic consequence of obesity and the metabolic syndrome. Proc Nutr Soc 2010; 69 (2) 211-220
  • 17 Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obes Rev 2010; 11 (6) 430-445
  • 18 Bartz R, Li WH, Venables B , et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 2007; 48 (4) 837-847
  • 19 Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 2002; 277 (46) 44507-44512
  • 20 Cermelli S, Guo Y, Gross SP, Welte MA. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 2006; 16 (18) 1783-1795
  • 21 Krahmer N, Hilger M, Kory N , et al. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol Cell Proteomics 2013; 12 (5) 1115-1126
  • 22 Fujimoto T, Parton RG. Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 2011; 3 (3)
  • 23 Zhang P, Na H, Liu Z , et al. Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteomics 2012; 11 (8) 317-328
  • 24 Zhang H, Wang Y, Li J , et al. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I. J Proteome Res 2011; 10 (10) 4757-4768
  • 25 Larsson S, Resjö S, Gomez MF, James P, Holm C. Characterization of the lipid droplet proteome of a clonal insulin-producing β-cell line (INS-1 832/13). J Proteome Res 2012; 11 (2) 1264-1273
  • 26 Beller M, Riedel D, Jänsch L , et al. Characterization of the drosophila lipid droplet subproteome. Mol Cell Proteomics 2006; 5 (6) 1082-1094
  • 27 Grillitsch K, Connerth M, Köfeler H , et al. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta 2011; 1811 (12) 1165-1176
  • 28 Ivashov VA, Grillitsch K, Koefeler H , et al. Lipidome and proteome of lipid droplets from the methylotrophic yeast Pichia pastoris . Biochim Biophys Acta 2013; 1831 (2) 282-290
  • 29 Ohsaki Y, Maeda T, Maeda M, Tauchi-Sato K, Fujimoto T. Recruitment of TIP47 to lipid droplets is controlled by the putative hydrophobic cleft. Biochem Biophys Res Commun 2006; 347 (1) 279-287
  • 30 Wolins NE, Quaynor BK, Skinner JR , et al. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 2006; 55 (12) 3418-3428
  • 31 Bickel PE, Tansey JT, Welte MA. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 2009; 1791 (6) 419-440
  • 32 Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, Bickel PE. S3-12, Adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem 2005; 280 (19) 19146-19155
  • 33 Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 2008; 47 (6) 1936-1946
  • 34 Okumura T. Role of lipid droplet proteins in liver steatosis. J Physiol Biochem 2011; 67 (4) 629-636
  • 35 Dalen KT, Schoonjans K, Ulven SM , et al. Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma. Diabetes 2004; 53 (5) 1243-1252
  • 36 Motomura W, Inoue M, Ohtake T , et al. Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochem Biophys Res Commun 2006; 340 (4) 1111-1118
  • 37 Matsusue K, Kusakabe T, Noguchi T , et al. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab 2008; 7 (4) 302-311
  • 38 Gavrilova O, Haluzik M, Matsusue K , et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 2003; 278 (36) 34268-34276
  • 39 Inoue M, Ohtake T, Motomura W , et al. Increased expression of PPARgamma in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun 2005; 336 (1) 215-222
  • 40 Panasyuk G, Espeillac C, Chauvin C , et al. PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nat Commun 2012; 3: 672
  • 41 Yamazaki T, Shiraishi S, Kishimoto K, Miura S, Ezaki O. An increase in liver PPARγ2 is an initial event to induce fatty liver in response to a diet high in butter: PPARγ2 knockdown improves fatty liver induced by high-saturated fat. J Nutr Biochem 2011; 22 (6) 543-553
  • 42 Schadinger SE, Bucher NL, Schreiber BM, Farmer SR. PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 2005; 288 (6) E1195-E1205
  • 43 Zhang YL, Hernandez-Ono A, Siri P , et al. Aberrant hepatic expression of PPARgamma2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. J Biol Chem 2006; 281 (49) 37603-37615
  • 44 Greco D, Kotronen A, Westerbacka J , et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol 2008; 294 (5) G1281-G1287
  • 45 Lee B, Zhu J, Wolins NE, Cheng JX, Buhman KK. Differential association of adipophilin and TIP47 proteins with cytoplasmic lipid droplets in mouse enterocytes during dietary fat absorption. Biochim Biophys Acta 2009; 1791 (12) 1173-1180
  • 46 Carr RM, Patel RT, Rao V , et al. Reduction of TIP47 improves hepatic steatosis and glucose homeostasis in mice. Am J Physiol Regul Integr Comp Physiol 2012; 302 (8) R996 –R1003
  • 47 Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem 2002; 277 (20) 17377-17380
  • 48 Olofsson SO, Stillemark-Billton P, Asp L. Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends Cardiovasc Med 2000; 10 (8) 338-345
  • 49 Raabe M, Véniant MM, Sullivan MA , et al. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J Clin Invest 1999; 103 (9) 1287-1298
  • 50 Jamil H, Dickson Jr JK, Chu CH , et al. Microsomal triglyceride transfer protein. Specificity of lipid binding and transport. J Biol Chem 1995; 270 (12) 6549-6554
  • 51 Ginsberg HN, Fisher EA. The ever-expanding role of degradation in the regulation of apolipoprotein B metabolism. J Lipid Res 2009; 50 (Suppl): S162-S166
  • 52 Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic hypocholesterolaemic lipid disorders and apolipoprotein B metabolism. Crit Rev Clin Lab Sci 2005; 42 (5-6) 515-545
  • 53 Linton MF, Farese Jr RV, Young SG. Familial hypobetalipoproteinemia. J Lipid Res 1993; 34 (4) 521-541
  • 54 Tarugi P, Averna M, Di Leo E , et al. Molecular diagnosis of hypobetalipoproteinemia: an ENID review. Atherosclerosis 2007; 195 (2) e19-e27
  • 55 Ye J, Li JZ, Liu Y , et al. Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab 2009; 9 (2) 177-190
  • 56 Gusarova V, Seo J, Sullivan ML, Watkins SC, Brodsky JL, Fisher EA. Golgi-associated maturation of very low density lipoproteins involves conformational changes in apolipoprotein B, but is not dependent on apolipoprotein E. J Biol Chem 2007; 282 (27) 19453-19462
  • 57 Gusarova V, Brodsky JL, Fisher EA. Apolipoprotein B100 exit from the endoplasmic reticulum (ER) is COPII-dependent, and its lipidation to very low density lipoprotein occurs post-ER. J Biol Chem 2003; 278 (48) 48051-48058
  • 58 Tiwari S, Siddiqi S, Siddiqi SA. CideB protein is required for the biogenesis of very low density lipoprotein (VLDL) transport vesicle. J Biol Chem 2013; 288 (7) 5157-5165
  • 59 Li X, Ye J, Zhou L, Gu W, Fisher EA, Li P. Opposing roles of cell death-inducing DFF45-like effector B and perilipin 2 in controlling hepatic VLDL lipidation. J Lipid Res 2012; 53 (9) 1877-1889
  • 60 Chang BH, Li L, Paul A , et al. Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol Cell Biol 2006; 26 (3) 1063-1076
  • 61 Imai Y, Varela GM, Jackson MB, Graham MJ, Crooke RM, Ahima RS. Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology 2007; 132 (5) 1947-1954
  • 62 Magnusson B, Asp L, Boström P , et al. Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglycerides and inhibits secretion of very low-density lipoproteins. Arterioscler Thromb Vasc Biol 2006; 26 (7) 1566-1571
  • 63 Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 2006; 45 (1) 42-72
  • 64 Chavez JA, Summers SA. Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms. Biochim Biophys Acta 2010; 1801 (3) 252-265
  • 65 Cusi K. Role of insulin resistance and lipotoxicity in non-alcoholic steatohepatitis. Clin Liver Dis 2009; 13 (4) 545-563
  • 66 Cantley JL, Yoshimura T, Camporez JP , et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc Natl Acad Sci U S A 2013; 110 (5) 1869-1874
  • 67 Haas JT, Winter HS, Lim E , et al. DGAT1 mutation is linked to a congenital diarrheal disorder. J Clin Invest 2012; 122 (12) 4680-4684
  • 68 Ables GP, Yang KJ, Vogel S , et al. Intestinal DGAT1 deficiency reduces postprandial triglyceride and retinyl ester excursions by inhibiting chylomicron secretion and delaying gastric emptying. J Lipid Res 2012; 53 (11) 2364-2379
  • 69 Buhman KK, Smith SJ, Stone SJ , et al. DGAT1 is not essential for intestinal triacylglycerol absorption or chylomicron synthesis. J Biol Chem 2002; 277 (28) 25474-25479
  • 70 Bozza PT, Yu W, Penrose JF, Morgan ES, Dvorak AM, Weller PF. Eosinophil lipid bodies: specific, inducible intracellular sites for enhanced eicosanoid formation. J Exp Med 1997; 186 (6) 909-920
  • 71 D'Avila H, Melo RC, Parreira GG, Werneck-Barroso E, Castro-Faria-Neto HC, Bozza PT. Mycobacterium bovis bacillus Calmette-Guérin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 2006; 176 (5) 3087-3097
  • 72 D'Avila H, Freire-de-Lima CG, Roque NR , et al. Host cell lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of apoptotic cells are associated with prostaglandin E2 generation and increased parasite growth. J Infect Dis 2011; 204 (6) 951-961
  • 73 Vieira-de-Abreu A, Assis EF, Gomes GS , et al. Allergic challenge-elicited lipid bodies compartmentalize in vivo leukotriene C4 synthesis within eosinophils. Am J Respir Cell Mol Biol 2005; 33 (3) 254-261
  • 74 Wang CW, Lee SC. The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis. J Cell Sci 2012; 125 (Pt 12) 2930-2939
  • 75 Mantzaris MD, Tsianos EV, Galaris D. Interruption of triacylglycerol synthesis in the endoplasmic reticulum is the initiating event for saturated fatty acid-induced lipotoxicity in liver cells. FEBS J 2011; 278 (3) 519-530
  • 76 Jo Y, Hartman IZ, DeBose-Boyd RA. Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet-associated endoplasmic reticulum membranes. Mol Biol Cell 2013; 24 (3) 169-183
  • 77 Suzuki M, Otsuka T, Ohsaki Y , et al. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell 2012; 23 (5) 800-810
  • 78 Forte TM, Shu X, Ryan RO. The ins (cell) and outs (plasma) of apolipoprotein A-V. J Lipid Res 2009; 50 (Suppl): S150-S155
  • 79 Ploegh HL. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 2007; 448 (7152) 435-438
  • 80 Zhou M, Fisher EA, Ginsberg HN. Regulated co-translational ubiquitination of apolipoprotein B100. A new paradigm for proteasomal degradation of a secretory protein. J Biol Chem 1998; 273 (38) 24649-24653
  • 81 Olzmann JA, Kopito RR. Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J Biol Chem 2011; 286 (32) 27872-27874
  • 82 Herker E, Ott M. Emerging role of lipid droplets in host/pathogen interactions. J Biol Chem 2012; 287 (4) 2280-2287
  • 83 Harris C, Herker E, Farese Jr RV, Ott M. Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J Biol Chem 2011; 286 (49) 42615-42625
  • 84 Wilfling F, Wang H, Haas JT , et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 2013; 24 (4) 384-399
  • 85 Farese Jr RV, Walther TC. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 2009; 139 (5) 855-860
  • 86 Gross DA, Snapp EL, Silver DL. Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT) protein 2. PLoS ONE 2010; 5 (5) e10796
  • 87 Kadereit B, Kumar P, Wang WJ , et al. Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci U S A 2008; 105 (1) 94-99
  • 88 Miranda DA, Koves TR, Gross DA , et al. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2. J Biol Chem 2011; 286 (49) 42188-42199
  • 89 Gross DA, Zhan C, Silver DL. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc Natl Acad Sci U S A 2011; 108 (49) 19581-19586
  • 90 Villanueva CJ, Vergnes L, Wang J , et al. Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid storage versus thermogenic gene programs. Cell Metab 2013; 17 (3) 423-435
  • 91 Lefterova MI, Zhang Y, Steger DJ , et al. PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 2008; 22 (21) 2941-2952
  • 92 Moir RD, Gross DA, Silver DL, Willis IM. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet 2012; 8 (8) e1002890
  • 93 Guo Y, Walther TC, Rao M , et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008; 453 (7195) 657-661
  • 94 Krahmer N, Guo Y, Wilfling F , et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 2011; 14 (4) 504-515
  • 95 Penno A, Hackenbroich G, Thiele C. Phospholipids and lipid droplets. Biochim Biophys Acta 2013; 1831 (3) 589-594
  • 96 Hörl G, Wagner A, Cole LK , et al. Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J Biol Chem 2011; 286 (19) 17338-17350
  • 97 Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 2011; 286 (24) 21330-21339
  • 98 DeLong CJ, Shen YJ, Thomas MJ, Cui Z. Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J Biol Chem 1999; 274 (42) 29683-29688
  • 99 Shi X, Li J, Zou X , et al. Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase. J Lipid Res 2013; 54 (9) 2504-2514
  • 100 Kim YJ, Cho SY, Yun CH, Moon YS, Lee TR, Kim SH. Transcriptional activation of Cidec by PPARgamma2 in adipocyte. Biochem Biophys Res Commun 2008; 377 (1) 297-302
  • 101 Viswakarma N, Yu S, Naik S , et al. Transcriptional regulation of Cidea, mitochondrial cell death-inducing DNA fragmentation factor alpha-like effector A, in mouse liver by peroxisome proliferator-activated receptor alpha and gamma. J Biol Chem 2007; 282 (25) 18613-18624
  • 102 Puri V, Czech MP. Lipid droplets: FSP27 knockout enhances their sizzle. J Clin Invest 2008; 118 (8) 2693-2696
  • 103 Nishino N, Tamori Y, Tateya S , et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 2008; 118 (8) 2808-2821
  • 104 Jinno Y, Nakakuki M, Sato A , et al. Cide-a and Cide-c are induced in the progression of hepatic steatosis and inhibited by eicosapentaenoic acid. Prostaglandins Leukot Essent Fatty Acids 2010; 83 (2) 75-81
  • 105 Zhou L, Xu L, Ye J , et al. Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology 2012; 56 (1) 95-107
  • 106 Rubio-Cabezas O, Puri V, Murano I , et al; LD Screening Consortium. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med 2009; 1 (5) 280-287
  • 107 Jambunathan S, Yin J, Khan W, Tamori Y, Puri V. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS ONE 2011; 6 (12) e28614
  • 108 Gong J, Sun Z, Wu L , et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 2011; 195 (6) 953-963
  • 109 Sun Z, Gong J, Wu H , et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 2013; 4: 1594
  • 110 Magré J, Delépine M, Khallouf E , et al; BSCL Working Group. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 2001; 28 (4) 365-370
  • 111 Chen W, Chang B, Saha P , et al. Berardinelli-seip congenital lipodystrophy 2/seipin is a cell-autonomous regulator of lipolysis essential for adipocyte differentiation. Mol Cell Biol 2012; 32 (6) 1099-1111
  • 112 Cui X, Wang Y, Tang Y , et al. Seipin ablation in mice results in severe generalized lipodystrophy. Hum Mol Genet 2011; 20 (15) 3022-3030
  • 113 Fei W, Li H, Shui G , et al. Molecular characterization of seipin and its mutants: implications for seipin in triacylglycerol synthesis. J Lipid Res 2011; 52 (12) 2136-2147
  • 114 Payne VA, Grimsey N, Tuthill A , et al. The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 2008; 57 (8) 2055-2060
  • 115 Chen W, Yechoor VK, Chang BH, Li MV, March KL, Chan L. The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation. Endocrinology 2009; 150 (10) 4552-4561
  • 116 Yang W, Thein S, Guo X , et al. Seipin differentially regulates lipogenesis and adipogenesis through a conserved core sequence and an evolutionarily acquired C-terminus. Biochem J 2013; 452 (1) 37-44
  • 117 Cui X, Wang Y, Meng L , et al. Overexpression of a short human seipin/BSCL2 isoform in mouse adipose tissue results in mild lipodystrophy. Am J Physiol Endocrinol Metab 2012; 302 (6) E705-E713
  • 118 Fei W, Shui G, Zhang Y , et al. A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 2011; 7 (7) e1002201
  • 119 Fei W, Du X, Yang H. Seipin, adipogenesis and lipid droplets. Trends Endocrinol Metab 2011; 22 (6) 204-210
  • 120 Tian Y, Bi J, Shui G , et al. Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genet 2011; 7 (4) e1001364