Zahnmedizin up2date 2015; 9(06): 565-586
DOI: 10.1055/s-0033-1358197
Endodontologie
Georg Thieme Verlag KG Stuttgart · New York

Interne Resorptionen – Ätiologie, Pathogenese, Diagnostik und Therapie

Michael Arnold
Further Information

Publication History

Publication Date:
01 December 2015 (online)

Einleitung

Resorptionen an Zahnhartgeweben treten physiologisch im Verlauf des Zahnwechsels an Milchzähnen auf. Das Vorkommen resorptiver Prozesse an bleibenden Zähnen stellt einen pathologischen Prozess dar, der zu einem Abbau von Zahnhartgeweben führt. Unterschieden werden Resorptionen nach ihrer Pathogenese in externe und interne Resorptionen. Interne Resorptionen können nur auftreten, solange die Pulpa noch vital ist. Die Resorptionslakunen können erst im fortgeschrittenen Stadium radiografisch differenziert werden. In der Phase der aktiven Resorption sind die Lakunen gefüllt mit Granulationsgewebe. In Abhängigkeit zur Ausprägung können interne Resorptionen aufgrund ihres kontinuierlichen Zuwachses die Wurzel perforieren.

Entscheidend für den Erfolg der Zahnerhaltung ist die frühzeitige Diagnostik und Differenzialdiagnostik, sodass eine adäquate Therapie bestimmt werden kann. Insbesondere die Abgrenzung von primär externen Wurzelresorptionen hat einen entscheidenden Einfluss auf die prognostische Einschätzung und die therapeutischen Risiken.

Die Nutzung eines Dentalmikroskops oder stark vergrößernde Lupenbrillen sind Voraussetzungen einer differenzierten minimalinvasiven Therapie bei guter Prognose für einen langfristigen Zahnerhalt.

Mit der internen Resorption wird der Ab- und Umbau von Zahnhartsubstanz bezeichnet. Die interne Resorption ist ein pathologischer fortschreitender Prozess, der an eine teilweise vitale Pulpa gekoppelt ist. Erstmalig wurde eine interne Resorption an einem unteren bleibenden Molaren von Bell im Jahr 1830 beschrieben [1], [2].

Die im Verlauf der Resorption sich entwickelnden Zahnhartsubstanzdefekte variieren in Form, Ausdehnung und Lokalisation, sodass interne Resorptionen mit Karies oder externen Resorptionen verwechselt werden können [3] (Abb. [1]). Je nach Lage und Ausprägung interner Resorptionen wird die erforderliche endodontische Therapie erschwert. Mit der Analyse der pathomorphologischen und mikrobiologischen Grundlagen wird eine ätiologische Einteilung interner Resorptionen vorgestellt. Differenzierte Konzepte der antimikrobiellen Therapie und Verfahren, die den Langzeiterhalt betroffener Zähne ermöglichen, sollen vorgestellt werden.

Zoom Image
Abb. 1 Zahn 36 mit Verdacht auf eine Karies. Die etwa 4 mm große, kreisrunde, unregelmäßige Aufhellung lässt sich als interne Resorption differenzieren.
 
  • Literatur

  • 1 Bell T. The Anatomy, Physiology, and Disease of the Teeth. Philadelphia, PA: Carey and Lee Publishing; 1830: 171-172
  • 2 Wedl C. Pathologie der Zähne mit besonderer Rücksicht auf Anatomie und Physiologie. Leipzig: Arthur Felix; 1870: 143
  • 3 Fuss Z, Tsesis I, Lin S. Wurzelresorption – Diagnose, Klassifikation und den Reizfaktoren entsprechende Behandlungsoptionen. Endodontie 2004; 13: 13-22
  • 4 Haapasalo M, Endal U. Internal inflammatory root resorption: the unknown resorption of the tooth. Endod Topics 2006; 14: 60-79
  • 5 Gabor C, Tam E, Shen Y et al. Prevalence of internal inflammatory root resorption. J Endod 2012; 38: 24-27
  • 6 Andreasen JO. Luxation of permanent teeth due to trauma. Scand J Dent Res 1970; 78: 273-286
  • 7 Wedenberg C, Zetterqvist L. Internal resorption in human teeth – a histological, scanning electron microscopic, and enzyme histochemical study. J Endod 1987; 13: 255-259
  • 8 Andreasen FM, Kahler B. Pulpal response after acute dental injury in the permanent dentition: clinical implications-a review. J Endod 2015; 41: 299-308
  • 9 Arnold M, Hoffmann T, Klimm W. Diagnostik und Therapie einer fortgeschrittenen internen entzündlichen Resorption mit radikulärer Perforation. Quintessenz 2000; 51: 7-14
  • 10 Ahlberg K, Bystedt H, Eliasson S et al. Long-term evaluation of autotransplanted maxillary canines with completed root formation. Acta Odontol Scand 1983; 41: 23-31
  • 11 Eliasson S, Låftman AC, Strindberg L. Autotransplanted teeth with early-stage endodontic treatment: a radiographic evaluation. Oral Surg Oral Med Oral Pathol 1988; 65: 598-603
  • 12 Paulsen HU, Andreasen JO, Schwartz O. Pulp and periodontal healing, root development and root resorption subsequent to transplantation and orthodontic rotation: a long-term study of autotransplanted premolars. Am J Orthod Dentofacial Orthop 1995; 108: 630-640
  • 13 Gottlieb B, Orban B. Veränderungen im Periodontium nach chirurgischer Diathermie. Z Stomat 1930; 28: 1208-1213
  • 14 Dilts WE, Luebke RG. Internal resorption and crown preparation. J Prosthet Dent 1967; 18: 126-130
  • 15 Cabrini RL, Manfrede EE. Internal resorption of dentine; histopathologic control of eight cases after pulp amputation and capping with calcium hydroxide. Oral Surg Oral Med Oral Pathol 1957; 10: 90-96
  • 16 Sönmez D, Durutürk L. Ca(OH)2 pulpotomy in primary teeth. Part I: internal resorption as a complication following pulpotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: e94-e98
  • 17 Galler KM, DʼSouza RN, Federlin M et al. Dentin conditioning codetermines cell fate in regenerative endodontics. J Endod 2011; 37: 1536-1541
  • 18 Chen MY, Chen KL, Chen CA et al. Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures. Int Endod J 2012; 45: 294-305
  • 19 Nagaraj E, Kaur RP, Raghuram PH et al. Multiple internal resorption in permanent teeth associated with hyperparathyroidism. Indian J Dent Res 2013; 24: 128-131
  • 20 Urban D, Mincik J. Monozygotic twins with idiopathic internal root resorption: A case report. Aust Endod J 2010; 36: 79-82
  • 21 Tamse A. Internal resorption with external perforation (case report). Refuat Hapeh Vehashinayim 1976; 25: 15-18
  • 22 Abuabara A, Costa RG, Morais EC et al. Prosthetic rehabilitation and management of an MTA-treated maxillary central incisor with root perforation and severe internal resorption. J Prosthodont 2013; 22: 413-418
  • 23 Götz W, Quondamatteo F, Ragotzki S et al. Localization of cathepsin D in human odontoclasts. a light and electron microscopical immunocytochemical study. Connect Tissue Res 2000; 41: 185-194
  • 24 Dempster DW, Lambing CL, Kostenuik PJ et al. Role of RANK ligand and denosumab, a targeted RANK ligand inhibitor, in bone health and osteoporosis: a review of preclinical and clinical data. Clin Ther 2012; 34: 521-536
  • 25 Sahara N, Okafuji N, Toyoki A et al. Odontoclastic resorption at the pulpal surface of coronal dentin prior to the shedding of human deciduous teeth. Arch Histol Cytol 1992; 55: 273-285
  • 26 Sahara N, Toyoki A, Ashizawa Y et al. Cytodifferentiation of the odontoclast prior to the shedding of human deciduous teeth: an ultrastructural and cytochemical study. Anat Rec 1996; 244: 33-49
  • 27 Chung CJ, Soma K, Rittling SR et al. OPN deficiency suppresses appearance of odontoclastic cells and resorption of the tooth root induced by experimental force application. J Cell Physiol 2008; 214: 614-620
  • 28 Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab 2012; 23: 576-581
  • 29 Zaidi M, Adebanjo OA, Moonga BS et al. Emerging insights into the role of calcium ions in osteoclast regulation. J Bone Miner Res 1999; 14: 669-674
  • 30 Svitkina TM, Bulanova EA, Chaga OY et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 2003; 160: 409-421
  • 31 Destaing O, Saltel F, Géminard JC et al. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 2003; 14: 407-416
  • 32 Saltel F, Destaing O, Bard F et al. Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell 2004; 15: 5231-5241
  • 33 Domon T, Sugaya K, Yawaka Y et al. Electron microscopic and histochemical studies of the mononuclear odontoclast of the human. Anat Rec 1994; 240: 42-51
  • 34 Lindskog S, Blomlöf L, Hammarström L. Repair of periodontal tissues in vivo and in vitro. J Clin Periodontol 1983; 10: 188-205
  • 35 Matsuda E. Ultrastructural and cytochemical study of the odontoclasts in physiologic root resorption of human deciduous teeth. J Electron Microsc 1992; 41: 131-140
  • 36 Sasaki T, Ueno-Matsuda E. Immunocytochemical localization of cathepsins B and G in odontoclasts of human deciduous teeth. J Dent Res 1992; 71: 1881-1884
  • 37 Trope M. Root resorption of dental and traumatic origin: classification based on etiology. Pract Periodontics Aesthet Dent 1998; 10: 515-522
  • 38 Wedenberg C, Lindskog S. Experimental internal resorption in monkey teeth. Endod Dent Traumatol 1985; 1: 221-227
  • 39 Nakamura I, Gailit J, Sasaki T. Osteoclast integrin alphaVbeta3 is present in the clear zone and contributes to cellular polarization. Cell Tissue Res 1996; 286: 507-515
  • 40 Patel S, Ricucci D, Durak C et al. Internal root resorption: a review. J Endod 2010; 36: 1107-1121
  • 41 Sakata M, Shiba H, Komatsuzawa H et al. Expression of osteoprotegerin (osteoclastogenesis inhibitory factor) in cultures of human dental mesenchymal cells and epithelial cells. J Bone Miner Res 1999; 14: 1486-1492
  • 42 Wada N, Maeda H, Tanabe K et al. Periodontal ligament cells secrete the factor that inhibits osteoclastic differentiation and function: the factor is osteoprotegerin/osteoclastogenesis inhibitory factor. J Periodontal Res 2001; 36: 56-63
  • 43 Zheng Y, Chen M, He L et al. Mesenchymal dental pulp cells attenuate dentin resorption in homeostasis. J Dent Res 2015; 94: 821-827
  • 44 Tronstad L. Root resorption – etiology, terminology and clinical manifestations. Endod Dent Traumatol 1988; 4: 241-252
  • 45 Benenati FW. Root resorption: types and treatment. Gen Dent 1997; 45: 42-45
  • 46 Trope M. Root resorption due to dental trauma. Endod Topics 2002; 1: 79-100
  • 47 Kanas RJ, Kanas SJ. Dental root resorption: a review of the literature and a proposed new classification. Compend Contin Educ Dent 2011; 32: e38-e52
  • 48 Ne RF, Witherspoon DE, Gutmann JL. Tooth resorption. Quintessence Int 1999; 30: 9-25
  • 49 Hülsmann M, Schäfer E. Probleme in der Endodontie. Berlin: Quintessenz; 2007
  • 50 Anil S, Raji MA, Beena VT et al. Fracture of tooth by internal resorption: case report. Endod Dent Traumatol 1993; 9: 79-80
  • 51 Calişkan MK, Türkün M. Root canal treatment of a root-fractured incisor tooth with internal resorption: a case report. Int Endod J 1996; 29: 393-397
  • 52 Hariharan VS, Nandlal B, Srilatha KT. Management of recurrent fracture of central incisor with internal resorption using light transmitting (luminex) post. J Indian Soc Pedod Prev Dent 2010; 28: 288-292
  • 53 Silveira FF, Nunes E, Soares JA et al. Double pink tooth associated with extensive internal root resorption after orthodontic treatment: a case report. Dent Traumatol 2009; 25: e43-e47
  • 54 Schwandt NW, Gound TG. Resorcinol-formaldehyde resin “Russian Red” endodontic therapy. J Endod 2003; 29: 435-437
  • 55 Patel S, Dawood A, Wilson R et al. The detection and management of root resorption lesions using intraoral radiography and cone beam computed tomography – an in vivo investigation. Int Endod J 2009; 42: 831-838
  • 56 Bhuva B, Barnes JJ, Patel S. The use of limited cone beam computed tomography in the diagnosis and management of a case of perforating internal root resorption. Int Endod J 2011; 44: 777-786
  • 57 Khojastepour L, Moazami F, Babaei M et al. Assessment of Root Perforation within Simulated Internal Resorption Cavities Using Cone-beam Computed Tomography. J Endod 2015; 41: 1520-1523
  • 58 Kamburoğlu K, Kursun S. A comparison of the diagnostic accuracy of CBCT images of different voxel resolutions used to detect simulated small internal resorption cavities. Int Endod J 2010; 43: 798-807
  • 59 Da Silveira PF, Fontana MP, Oliveira HW et al. CBCT-based volume of simulated root resorption – influence of FOV and voxel size. Int Endod J 2015; 48: 959-965
  • 60 Arnold M, Friedrichs C, Tulus G et al. Intrakoronale und intrakanaläre Diagnostik (IKD). Endodontie 2013; 22: 9-21
  • 61 Koçkapan C. Die Struktur des Wurzeldentins. Endodontie 2012; 21: 113-128
  • 62 Arnold M. Mikrosonde als Hilfsmittel in der Endodontie. Endodontie 2014; 23: 377-387
  • 63 Massarstrom LE, Blomlof LB, Feiglin B et al. Effect of calcium hydroxide treatment on periodontal repair and root resorption. Endod Dent Traumatol 1986; 2: 184-189
  • 64 Metzger Z, Teperovich E, Cohen R et al. The self-adjusting file (SAF). Part 3: removal of debris and smear layer-A scanning electron microscope study. J Endod 2010; 36: 697-702
  • 65 Solomonov M, Ben-Itzhak J, Kfir A et al. Self-adjusting file (SAF) separation in clinical use: A preliminary survey among experienced SAF users regarding prevalence and retrieval methods. J Conserv Dent 2015; 18: 200-204
  • 66 European Society of Endodontology. Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. Int Endod J 2006; 39: 921-930
  • 67 Keles A, Ahmetoglu F, Uzun I. Quality of different gutta-percha techniques when filling experimental internal resorptive cavities: a micro-computed tomography study. Aust Endod J 2014; 40: 131-135
  • 68 Ulusoy ÖI, Yılmazoğlu MZ, Görgül G. Effect of several thermoplastic canal filling techniques on surface temperature rise on roots with simulated internal resorption cavities: an infrared thermographic analysis. Int Endod J 2015; 48: 171-176
  • 69 Jacobovitz M, de Lima RK. Treatment of inflammatory internal root resorption with mineral trioxide aggregate: a case report. Int Endod J 2008; 41: 905-912
  • 70 Bendyk-Szeffer M, Łagocka R, Trusewicz M et al. Perforating internal root resorption repaired with mineral trioxide aggregate caused complete resolution of odontogenic sinus mucositis: a case report. J Endod 2015; 41: 274-278
  • 71 Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993; 19: 541-544
  • 72 Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review. Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010; 36: 400-413
  • 73 Kqiku L, Ebeleseder KA, Glockner K. Treatment of invasive cervical resorption with sandwich technique using mineral trioxide aggregate: a case report. Oper Dent 2012; 37: 98-106
  • 74 Schwartz RS, Robbins JW. Post placement and restoration of endodontically treated teeth: a literature review. J Endod 2004; 30: 289-301
  • 75 Perlea P, Nistor CC, Suciu I et al. Rare multiple internal root resorption associated with perforation – a case report. Rom J Morphol Embryol 2014; 55: 1477-1481
  • 76 Brito-Júnior M, Quintino AF, Camilo CC et al. Nonsurgical endodontic management using MTA for perforative defect of internal root resorption: report of a long term follow-up. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 784-788
  • 77 Gernhardt CR, Eppendorf K, Kozlowski A et al. Toxicity of concentrated sodium hypochlorite used as an endodontic irrigant. Int Endod J 2004; 37: 272-280
  • 78 Ebeleseder KA, Kqiku L. Arrest and Calcification Repair of internal root resorption with a novel treatment approach: Report of two cases. Dent Traumatol 2015; 31: 332-337
  • 79 Calişkan MK, Türkün M. Prognosis of permanent teeth with internal resorption: a clinical review. Endod Dent Traumatol 1997; 13: 75-81
  • 80 Nunes E, Silveira FF, Soares JA et al. Treatment of perforating internal root resorption with MTA: a case report. J Oral Sci 2012; 54: 127-131
  • 81 Bendyk-Szeffer M, Łagocka R, Trusewicz M et al. Perforating internal root resorption repaired with mineral trioxide aggregate caused complete resolution of odontogenic sinus mucositis: a case report. J Endod 2015; 41: 274-278