Horm Metab Res 2013; 45(11): 769-773
DOI: 10.1055/s-0033-1347208
Hypothesis
© Georg Thieme Verlag KG Stuttgart · New York

C-Peptide: A Molecule Balancing Insulin States in Secretion and Diabetes-associated Depository Conditions

M. Landreh
1   Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
,
J. Johansson
2   KI-Alzheimer’s Disease Research Center, NVS Department, Karolinska Institutet, Stockholm, Sweden
3   Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
,
H. Jörnvall
1   Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
› Author Affiliations
Further Information

Publication History

received 21 December 2012

accepted 06 May 2013

Publication Date:
18 June 2013 (online)

Abstract

Gradually, the C-peptide part of proinsulin has evolved from being viewed upon as a side product of insulin synthesis and secretion to being considered as a bioactive peptide with endocrine functions. Independent of these, its biophysical properties and peptide interactions point to still further roles of C-peptide, in particular regarding possible links to diabetes-related protein aggregations. Insulin, which can deposit at the injection sites in the treatment of diabetes, and islet amyloid polypeptide (IAPP), which can form amyloid fibrils in the islets of Langerhans in diabetes type 2, are kept nonaggregated by charge-based interactions with C-peptide at defined stoichiometries. It is possible that the conformational stabilization of insulin and IAPP by C-peptide may also counterbalance their aggregational tendencies at the high peptide concentrations in the pancreatic β-cell secretory granules. The concentration imbalances of C-peptide, insulin, and IAPP from the hyperpeptidism early in T2DM patients and the insulin-only injections in T1DM patients may distort equilibria of these peptide interactions and promote protein aggregation. Additionally, the chaperone-like actions of C-peptide may increase bioavailability of insulin supplements given to T1DM patients and prevent the formation of insulin deposits. Similarly, peptide interactions may influence depository tendencies in additional peptide systems. In short, biophysical studies are relevant to establish all roles of peptide imbalances in T1DM and T2DM and associated depository diseases.

Supporting Information

 
  • References

  • 1 Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 2003; 46: 3-19
  • 2 Johansson BL, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with Type 1 diabetes mellitus. Diabet Med 2000; 17: 181-189
  • 3 Johansson BL, Sjöberg S, Wahren J. The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetologia 1992; 35: 121-128
  • 4 Hansen A, Johansson BL, Wahren J, von Bibra H. C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes 2002; 51: 3077-3082
  • 5 Shafqat J, Juntti-Berggren L, Zhong Z, Ekberg K, Kohler M, Berggren PO, Johansson J, Wahren J, Jörnvall H. Proinsulin C-peptide and its analogues induce intracellular Ca2+ increases in human renal tubular cells. Cell Mol Life Sci 2002; 59: 1185-1189
  • 6 Rigler R, Pramanik A, Jonasson P, Kratz G, Jansson OT, Nygren P, Ståhl S, Ekberg K, Johansson B, Uhlen S, Uhlen M, Jörnvall H, Wahren J. Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 1999; 96: 13318-13323
  • 7 Lindahl E, Nyman U, Zaman F, Palmberg C, Cascante A, Shafqat J, Takigawa M, Sävendahl L, Jörnvall H, Joseph B. Proinsulin C-peptide regulates ribosomal RNA expression. J Biol Chem 2009; 285: 3462-3469
  • 8 Wahren J, Ekberg K, Jörnvall H. C-peptide is a bioactive peptide. Diabetologia 2007; 50: 503-509
  • 9 Shafqat J, Melles E, Sigmundsson K, Johansson BL, Ekberg K, Alvelius G, Henriksson M, Johansson J, Wahren J, Jörnvall H. Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell Mol Life Sci 2006; 63: 1805-1811
  • 10 Jörnvall H, Lindahl E, Astorga-Wells J, Lind J, Holmlund A, Melles E, Alvelius G, Nerelius C, Mäler L, Johansson J. Oligomerization and insulin interactions of proinsulin C-peptide: Threefold relationships to properties of insulin. Biochem Biophys Res Commun 2010; 391: 1561-1566
  • 11 Landreh M, Stukenborg JB, Willander H, Söder O, Johansson J, Jörnvall H. Proinsulin C-peptide interferes with insulin fibril formation. Biochem Biophys Res Commun 2012; 418: 489-493
  • 12 Janciauskiene S, Eriksson S, Carlemalm E, Ahrén B. B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formation in vitro. Biochem Biophys Res Commun 1997; 236: 580-585
  • 13 Westermark P, Li ZC, Westermark GT, Leckström A, Steiner DF. Effects of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett 1996; 379: 203-206
  • 14 Westermark GT, Leckström A, Ma Z, Westermark P. Increased release of IAPP in response to long-term high fat intake in mice. Horm Metab Res 1998; 30: 256-258
  • 15 Larson JL, Miranker AD. The mechanism of insulin action on islet amyloid polypeptide fiber formation. J Mol Biol 2004; 335: 221-231
  • 16 Landreh M, Johansson J, Rising A, Presto J, Jörnvall H. Control of amyloid formation by autoregulation. Biochem J 2012; 447: 185-192
  • 17 Brange J, Andersen L, Laursen ED, Meyn G, Rasmussen E. Toward understanding insulin fibrillation. J Pharm Sci 1997; 86: 517-525
  • 18 Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure 2010; 18: 1244-1260
  • 19 Nettleton EJ, Tito P, Sunde M, Bouchard M, Dobson CM, Robinson CV. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry. Biophys J 2000; 79: 1053-1065
  • 20 Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 2001; 40: 6036-6046
  • 21 Hua QX, Weiss MA. Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. J Biol Chem 2004; 279: 21449-21460
  • 22 Michael J, Carroll R, Swift HH, Steiner DF. Studies on the molecular organization of rat insulin secretory granules. J Biol Chem 1987; 262: 16531-16535
  • 23 Fava E, Dehghany J, Ouwendijk J, Müller A, Niederlein A, Verkade P, Meyer-Hermann M, Solimena M. Novel standards in the measurement of rat insulin granules combining electron microscopy, high-content image analysis and in silico modelling. Diabetologia 2012; 55: 1013-1023
  • 24 Michael DJ, Ritzel RA, Haataja L, Chow RH. Pancreatic beta-cells secrete insulin in fast- and slow-release forms. Diabetes 2006; 55: 600-607
  • 25 Michael DJ, Cai H, Xiong W, Ouyang J, Chow RH. Mechanisms of peptide hormone secretion. Trends Endocrinol Metab 2006; 17: 408-415
  • 26 Noormagi A, Gavrilova J, Smirnova J, Tougu V, Palumaa P. Zn(II) ions co-secreted with insulin suppress inherent amyloidogenic properties of monomeric insulin. Biochem J 2010; 430: 511-518
  • 27 Lemaire K, Ravier MA, Schraenen A, Creemers JW, Van de Plas R, Granvik M, Van Lommel L, Waelkens E, Chimienti F, Rutter GA, Gilon P, in’t Veld PA, Schuit FC. Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 2009; 106: 14872-14877
  • 28 Bakaysa DL, Radziuk J, Havel HA, Brader ML, Li S, Dodd SW, Beals JM, Pekar AH, Brems DN. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Sci 1996; 5: 2521-2531
  • 29 Nakazawa S, Ahn J, Hashii N, Hirose K, Kawasaki N. Analysis of the local dynamics of human insulin and a rapid-acting insulin analog by hydrogen/deuterium exchange mass spectrometry. Biochim Biophys Acta 2012; DOI: 10.1016/j.bbapap.2012.11.012.
  • 30 Ludwig DB, Webb JN, Fernandez C, Carpenter JF, Randolph TW. Quaternary conformational stability: The effect of reversible self-association on the fibrillation of two insulin analogs. Biotechnol Bioeng 2011; DOI: 10.1002/bit.23188.
  • 31 Nakazawa S, Hashii N, Harazono A, Kawasaki N. Analysis of oligomeric stability of insulin analogs using hydrogen/deuterium exchange mass spectrometry. Anal Biochem 2012; 420: 61-67
  • 32 Landreh M, Alvelius G, Willander H, Stukenborg JB, Söder O, Johansson J, Jörnvall H. Insulin solubility transitions by pH-dependent interactions with proinsulin C-peptide. FEBS J 2012; 279: 4589-4597
  • 33 Nerelius C, Alvelius G, Jörnvall H. N-terminal segment of proinsulin C-peptide active in insulin interaction/desaggregation. Biochem Biophys Res Commun 2010; 403: 462-467
  • 34 Steiner DF. The proinsulin C-peptide – a multirole model. Exp Diabesity Res 2004; 5: 7-14
  • 35 Pramanik A, Ekberg K, Zhong Z, Shafqat J, Henriksson M, Jansson O, Tibell A, Tally M, Wahren J, Jörnvall H, Rigler R, Johansson J. C-peptide binding to human cell membranes: importance of Glu27. Biochem Biophys Res Commun 2001; 284: 94-98
  • 36 Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 1987; 84: 3881-3885
  • 37 Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 1987; 84: 8628-8632
  • 38 Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiological reviews 2011; 91: 795-826
  • 39 Foster MC, Leapman RD, Li MX, Atwater I. Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys J 1993; 64: 525-532
  • 40 Lind J, Lindahl E, Peralvarez-Marin A, Holmlund A, Jörnvall H, Mäler L. Structural features of proinsulin C-peptide oligomeric and amyloid states. FEBS J 2010; 277: 3759-3768
  • 41 Barg S, Huang P, Eliasson L, Nelson DJ, Obermüller S, Rorsman P, Thevenod F, Renström E. Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification. J Cell Sci 2001; 114: 2145-2154
  • 42 Steiner DF. Cocrystallization of proinsulin and insulin. Nature 1973; 243: 528-530
  • 43 Sizonenko S, Irminger JC, Buhler L, Deng S, Morel P, Halban PA. Kinetics of proinsulin conversion in human islets. Diabetes 1993; 42: 933-936
  • 44 Marsh BJ, Soden C, Alarcon C, Wicksteed BL, Yaekura K, Costin AJ, Morgan GP, Rhodes CJ. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine beta-cells. Mol Endocrinol 2007; 21: 2255-2269
  • 45 Suckale J, Solimena M. The insulin secretory granule as a signaling hub. Trends in endocrinology and metabolism: TEM 2010; 21: 599-609
  • 46 Tompkins LS, Nullmeyer KD, Murphy SM, Weber CS, Lynch RM. Regulation of secretory granule pH in insulin-secreting cells. American journal of physiology Cell physiology 2002; 283: C429-C437
  • 47 Hayden MR, Tyagi SC, Kerklo MM, Nicolls MR. Type 2 diabetes mellitus as a conformational disease. JOP: Journal of the pancreas 2005; 6: 287-302
  • 48 Carrell RW, Lomas DA. Conformational disease. Lancet 1997; 350: 134-138
  • 49 Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003; 426: 895-899
  • 50 Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011; 475: 324-332
  • 51 Kahn SE, Halban PA. Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of NIDDM. Diabetes 1997; 46: 1725-1732
  • 52 Clark A, Nilsson MR. Islet amyloid: a complication of islet dysfunction or an aetiological factor in Type 2 diabetes?. Diabetologia 2004; 47: 157-169
  • 53 Götz J, Ittner LM, Lim YA. Common features between diabetes mellitus and Alzheimer’s disease. Cell Mol Life Sci 2009; 66: 1321-1325
  • 54 Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet neurology 2004; 3: 169-178
  • 55 Kurochkin IV. Insulin-degrading enzyme: embarking on amyloid destruction. Trends Biochem Sci 2001; 26: 421-425
  • 56 Sanchez-Pulido L, Devos D, Valencia A. BRICHOS: a conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem Sci 2002; 27: 329-332
  • 57 Nerelius C, Gustafsson M, Nordling K, Larsson A, Johansson J. Anti-amyloid activity of the C-terminal domain of proSP-C against amyloid beta-peptide and medin. Biochemistry 2009; 48: 3778-3786
  • 58 Willander H, Presto J, Askarieh G, Biverstål H, Frohm B, Knight SD, Johansson J, Linse S. BRICHOS domains efficiently delay fibrillation of amyloid beta-peptide. J Biol Chem 2012; 287: 31608-31617
  • 59 Willander H, Askarieh G, Landreh M, Westermark P, Nordling K, Keranen H, Hermansson E, Hamvas A, Nogee LM, Bergman T, Saenz A, Casals C, Åqvist J, Jörnvall H, Berglund H, Presto J, Knight SD, Johansson J. High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein C. Proc Natl Acad Sci USA 2012; 109: 2325-2329
  • 60 Kilger E, Buehler A, Woelfing H, Kumar S, Kaeser SA, Nagarathinam A, Walter J, Jucker M, Coomaraswamy J. BRI2 protein regulates beta-amyloid degradation by increasing levels of secreted insulin-degrading enzyme (IDE). J Biol Chem 2011; 286: 37446-37457