Synlett 2014; 25(6): 853-857
DOI: 10.1055/s-0033-1340715
letter
© Georg Thieme Verlag Stuttgart · New York

N-Heterocyclic Carbene Mediated Homoenolate Annulation of Benzofuran-2,3-diones: Stereoselective Synthesis of Bis-Spirofuranones

K. C. Seetha Lakshmi
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Fax: +91(471)2491712   Email: vijaynair_2001@yahoo.com
b   School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India
,
Rony Rajan Paul
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Fax: +91(471)2491712   Email: vijaynair_2001@yahoo.com
,
Eringathodi Suresh
c   Analytical Department and Centralized Instrument Facility (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
,
Vijay Nair*
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Fax: +91(471)2491712   Email: vijaynair_2001@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 19 November 2013

Accepted after revision: 13 January 2014

Publication Date:
10 February 2014 (online)


Abstract

Stereoselective synthesis of bis-spirofuranones via N-heterocyclic carbene catalyzed homoenolate annulations of benzofuran-2,3-diones is reported.

Supporting Information

 
  • References and Notes


    • For reviews on NHC catalysis, see:
    • 1a Nair V, Bindu S, Vellalath S. Angew. Chem. Int. Ed. 2004; 43: 5130
    • 1b Christmann M. Angew. Chem. Int. Ed. 2005; 44: 2632
    • 1c Zeitler K. Angew. Chem. Int. Ed. 2005; 44: 7506
    • 1d Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 1e Marion N, Diez Gonzalez S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988
    • 1f Phillips EM, Chan A, Scheidt KA. Aldrichimica Acta 2009; 42: 55
    • 1g Moore JL, Rovis T. Top. Curr. Chem. 2010; 291: 77
    • 1h Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011; 44: 1182
    • 1i Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
    • 1j Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 1k Ryan SJ, Candish L, Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
    • 2a Ugai T, Tanaka R, Dokawa T. J. Pharm. Soc. Jpn. 1943; 63: 296
    • 2b Mizuhara S, Tamura R, Arata H. Proc. Jpn. Acad. 1951; 27: 302
    • 2c Mizuhara S, Handler P. J. Am. Chem. Soc. 1954; 76: 571
    • 2d Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
    • 3a Breslow R, Kim R. Tetrahedron Lett. 1994; 35: 699
    • 3b White MJ, Leeper FJ. J. Org. Chem. 2001; 66: 5124
    • 3c Piel I, Pawelczyk MD, Hirano K, Fröhlich R, Glorius F. Eur. J. Org. Chem. 2011; 5475

    • For selected references for asymmetric benzoin condensation reaction, see:
    • 3d Enders D, Breuer K, Teles JH. Helv. Chim. Acta 1996; 79: 1217
    • 3e Enders D, Kallfass U. Angew. Chem. Int. Ed. 2002; 41: 1743
    • 3f Enders D, Niemeier O, Balensiefer T. Angew. Chem. Int. Ed. 2006; 45: 1463
    • 4a Stetter H, Schreckenberg M. Angew. Chem., Int. Ed. Engl. 1973; 12: 81
    • 4b Stetter H. Angew. Chem., Int. Ed. Engl. 1976; 15: 639
    • 4c Stetter H, Kuhlmann H. Org. React. 1991; 40: 407
    • 4d DeAlaniz JR, Rovis T. Synlett 2009; 1189
  • 5 Burstein C, Glorius F. Angew. Chem. Int. Ed. 2004; 43: 6205
  • 6 Sohn SS, Rosen EL, Bode JW. J. Am. Chem. Soc. 2004; 126: 14370
  • 7 For the conceptualization and demonstration of homoenolate, see: Nickon A, Lambert JL. J. Am. Chem. Soc. 1962; 84: 4604

    • For reviews on homoenolate anions and their equivalents, see:
    • 8a Hoppe D. Angew. Chem., Int. Ed. Engl. 1984; 23: 932
    • 8b Hoppe D. Synthesis 2009; 43
    • 8c Kuwajima I, Nakamura E In Comprehensive Organic Synthesis . Vol. 2. Trost BM, Fleming I. Pergamon; New York: 1991: 441
    • 8d Lee VJ In Comprehensive Organic Synthesis . Vol. 4. Trost BM, Fleming I. Pergamon; New York: 1991: 117

    • For reviews on NHC catalyzed homoenolate chemistry, see:
    • 8e Nair V, Vellalath S, Babu BP. Chem. Soc. Rev. 2008; 37: 2691
    • 8f Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Vellalath S. Chem. Soc. Rev. 2011; 40: 5336
    • 9a Nair V, Vellalath S, Poonoth M, Suresh E. J. Am. Chem. Soc. 2006; 128: 8736
    • 9b Nair V, Vellalath S, Babu BP, Varghese V, Paul RR, Suresh E. Org. Biomol. Chem. 2010; 8: 4861
    • 9c Nair V, Paul RR, Padmaja DV. M, Aiswarya N, Sinu CR, Jose A. Tetrahedron 2011; 67: 9885
    • 9d Paul RR, Seetha Lakshmi KC, Suresh E, Nair V. Tetrahedron Lett. 2013; 54: 2046
    • 9e Sinu CR, Padmaja DV. M, Jini P, Seetha Lakshmi KC, Nair V. Synlett 2013; 24: 1671
    • 10a Wadamoto M, Phillips EM, Reynolds TE, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 10098
    • 10b Chiang P.-C, Kaeobamrung J, Bode JW. J. Am. Chem. Soc. 2007; 129: 3520
    • 10c Cardinal-David B, Raup DE. A, Scheidt KA. J. Am. Chem. Soc. 2010; 132: 5345
    • 10d Cohen DT, Cardinal-David B, Roberts JM, Sarjeant AA, Scheidt KA. Org. Lett. 2011; 13: 1068
    • 11a He M, Bode JW. Org. Lett. 2005; 7: 3131
    • 11b Kravina AG, Mahatthananchai J, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9433
    • 11c Zhang B, Feng P, Sun L.-H, Cui Y, Ye S, Jiao N. Chem. Eur. J. 2012; 18: 9198
  • 12 Nair V, Babu BP, Vellalath S, Varghese V, Raveendran AE, Suresh E. Org. Lett. 2009; 11: 2507
  • 13 Chan A, Scheidt KA. J. Am. Chem. Soc. 2008; 130: 2740
    • 14a He M, Bode JW. J. Am. Chem. Soc. 2008; 130: 418
    • 14b Rommel M, Fukuzumi T, Bode JW. J. Am. Chem. Soc. 2008; 130: 17266
    • 14c Nair V, Varghese V, Babu BP, Sinu CR, Suresh E. Org. Biomol. Chem. 2010; 8: 761
    • 15a Nair V, Sinu CR, Babu BP, Varghese V, Jose A, Suresh E. Org. Lett. 2009; 11: 5570
    • 15b Maji B, Ji L, Wang S, Vedachalam S, Ganguly R, Liu X.-W. Angew. Chem. Int. Ed. 2012; 51: 8276
    • 16a Burstein C, Tschan S, Xie X, Glorius F. Synthesis 2006; 2418
    • 16b Phillips EM, Reynolds TE, Scheidt KA. J. Am. Chem. Soc. 2008; 130: 2416
    • 16c Seayad J, Patra PK, Zhang Y, Ying JY. Org. Lett. 2008; 10: 953
    • 16d Nair V, Babu BP, Vellalath S, Suresh E. Chem. Commun. 2008; 747
    • 16e Yang L, Tan B, Wang F, Zhong G. J. Org. Chem. 2009; 74: 1744
    • 16f Nair V, Paul RR, Seetha Lakshmi KC, Menon RS, Jose A, Sinu CR. Tetrahedron Lett. 2011; 52: 5992
    • 16g Xu W.-Y, Iwaki R, Jia Y.-M, Zhang W, Kato A, Yu C.-Y. Org. Biomol. Chem. 2013; 11: 4622
    • 16h White N, DiRocco D, Rovis T. J. Am. Chem. Soc. 2013; 135: 8504
    • 16i Chen X.-Y, Sun L.-H, Ye S. Chem. Eur. J. 2013; 19: 4441
    • 16j Wang G, Chen X, Miao G, Yao W, Ma C. J. Org. Chem. 2013; 78: 6223
    • 17a Raup DE. A, Cardinal-David B, Holte D, Scheidt KA. Nat. Chem. 2010; 2: 766
    • 17b Zhao X, DiRocco DA, Rovis T. J. Am. Chem. Soc. 2011; 133: 12466
    • 17c Hirano K, Piel I, Glorius F. Chem. Lett. 2011; 40: 786
    • 17d Cohen DT, Scheidt KA. Chem. Sci. 2012; 3: 53
    • 17e De Vreese R, D’hooghe M. Beilstein J. Org. Chem. 2012; 8: 398
    • 18a Struble J, Bode JW. Tetrahedron 2009; 65: 4957
    • 18b Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 18c Sinu CR, Padmaja DV. M, Ranjini UP, Seetha Lakshmi KC, Suresh E, Nair V. Org. Lett. 2013; 15: 68
    • 19a Grasa GA, Kissling RM, Nolan SP. Org. Lett. 2002; 4: 3583
    • 19b Nyce GW, Lamboy JA, Connor EF, Waymouth RM, Hedrick JL. Org. Lett. 2002; 4: 3587
    • 19c Grasa GA, Güveli T, Singh R, Nolan SP. J. Org. Chem. 2003; 68: 2812
    • 19d Singh R, Kissling RM, Letellier M.-A, Nolan SP. J. Org. Chem. 2004; 69: 209
    • 19e Sohn SS, Bode JW. Org. Lett. 2005; 7: 3873
    • 19f Reynolds N, Rovis T. J. Am. Chem. Soc. 2005; 127: 16406
    • 19g Zeitler K. Org. Lett. 2006; 8: 637
    • 19h Samanta RC, Sarkar SD, Fröhlich R, Grimme S, Studer A. Chem. Sci. 2013; 4: 2177
    • 20a Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2011; 133: 4694
    • 20b Mahatthananchai J, Zheng P, Bode JW. Angew. Chem. Int. Ed. 2011; 50: 1673
    • 20c Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
    • 20d Douglas J, Churchill G, Smith A. Synthesis 2012; 44: 2295
    • 20e Biswas A, De S, Tebben L, Studer A. Chem. Commun. 2012; 48: 5190
    • 20f Candish L, Forsyth CM, Lupton DW. Angew. Chem. Int. Ed. 2013; 52: 9149
  • 21 Nair V, Vellalath S, Poonoth M, Mohan R, Suresh E. Org. Lett. 2006; 8: 507
    • 22a Buchi G, DeShong PR, Katsumura S, Sugimura Y. J. Am. Chem. Soc. 1979; 101: 5084
    • 22b Ohnuma T, Kimura Y, Ban Y. Tetrahedron Lett. 1981; 22: 4969
    • 22c Nakagawa M, Taniguchi M, Sodeoka M, Ito M, Yamaguchi K, Hino T. J. Am. Chem. Soc. 1983; 105: 3709
  • 23 Dugal-Tessier J, O’Bryan EA, Schroeder TB. H, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 4963
  • 24 Sun L.-H, Shen L.-T, Ye S. Chem. Commun. 2011; 10136
    • 25a Perold GW, Pachler KG. R. J. Chem. Soc. C 1966; 1918
    • 25b Iwagawa T, Hase T. Phytochemistry 1984; 23: 2201
    • 25c Itazaki H, Nagashima K, Kawamura Y, Matsumoto K, Nakai H, Terui YJ. J. Antibiot. 1992; 45: 38
    • 25d Tanaka K, Itazaki H, Yoshida TJ. J. Antibiot. 1992; 45: 50
    • 25e Machida K, Kikuchi M. Chem. Pharm. Bull. 1994; 42: 1388
    • 25f Cuzzupe AN, Di Florio R, Rizzacasa MA. J. Org. Chem. 2002; 67: 4392
    • 25g Li XL, Cheng X, Yang LM, Wang RR, Zheng YT, Xiao WL, Zhao Y, Xu G, Lu Y, Chang Y, Zheng QT, Zhao QS, Sun HD. Org. Lett. 2006; 8: 1937
    • 25h Keyzers RA, Daoust J, Davies-Coleman MT, Van Soest R, Balgi A, Donohue E, Roberge M, Andersen RJ. Org. Lett. 2008; 10: 2959
    • 25i Zhao K, Fu J, Zhang J, Yin W, Tang Y. Org. Biomol. Chem. 2013; 11: 2093
  • 26 Wang Z.-D, Wang F, Li X, Cheng J.-P. Org. Biomol. Chem. 2013; 11: 5634
  • 27 Crystal structure of the compound 4c has been deposited at the Cambridge Crystallographic Data Centre and allocated the reference No. CCDC 969774.
  • 28 Synthesis of 3′-(4-Methoxyphenyl)-4,7-dimethyl-2H,3′H-spiro[benzofuran-3,2′-furan]-2,5′(4′H)-dione (4a) 4,7-Dimethylbenzofuran-2,3-dione (88 mg, 0.5 mmol), 4-methoxycinnamaldehyde (122 mg, 0.75 mmol), and carbene precursor (15 mol%) were taken in dry CH2Cl2 (5 mL). After addition of Et3N (20 mol%) the reaction mixture was refluxed at 40 °C for 5 h under argon atmosphere. The reaction mixture on column chromatography on silica gel (100–200 mesh) using an EtOAc–hexane (10:90) mixture yielded the bis-spirofuranone 4a as a white solid. Yield 143 mg (85%); mp 111–113 °C. 1H NMR (500 MHz, CDCl3): δ = 7.12 (d, J = 8.0 Hz, 1 H), 6.95 (d, J = 8.0 Hz, 1 H), 6.79 (d, J = 9.0 Hz, 2 H), 6.72 (d, J = 8.5 Hz, 2 H), 4.27 (dd, J 1 = 14.0 Hz, J 2 = 8.0 Hz, 1 H), 3.75 (s, 3 H), 3.68 (dd, J 1 = 17.0 Hz, J 2 = 14.0 Hz, 1 H), 2.90 (dd, J 1 = 17.0 Hz, J 2 = 8.5 Hz, 1 H), 2.49 (s, 3 H), 2.10 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 173.4, 171.9, 159.8, 152.3, 133.5, 133.3, 128.7, 126.8, 122.9, 119.7, 118.9, 114.2, 86.9, 55.1, 47.5, 31.2, 17.1, 14.4. IR (film): νmax = 1810, 1736 cm–1. ESI-HRMS: m/z calcd for C20H18O5 [M + Na]+: 361.10519; found: 361.10471.