Synlett 2014; 25(5): 615-630
DOI: 10.1055/s-0033-1340487
account
© Georg Thieme Verlag Stuttgart · New York

The Design and Synthesis of Planar Chiral Ligands and Their Application to Asymmetric Catalysis

Nicholas A. Butt
a   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China
,
Delong Liu
b   School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China   Email: wanbin@sjtu.edu.cn
,
Wanbin Zhang*
a   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China
b   School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. of China   Email: wanbin@sjtu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 30 September 2013

Accepted after revision: 26 November 2013

Publication Date:
31 January 2014 (online)


Abstract

Ferrocene- and ruthenocene-based planar chiral ligands have been developed and used in transition-metal-catalyzed asymmetric allylic substitutions, asymmetric hydrogenations, and asymmetric conjugate addition reactions. The most common ferrocene ligands, which have bis(oxazoline) substituents on the cyclopentadiene rings, have been modified to create new planar chiral C 2-symmetric ligands, some of which have shown excellent potential in the aforementioned reactions. A series of planar chiral ruthenocene ligands have also been developed and their activities differ from those of their ferrocene counterparts.

1 Introduction

2 The Design and Synthesis of Planar Chiral Ligands

2.1 Ferrocene-Based Ligands

2.2 Ruthenocene-Based Ligands

3 Applications of Planar Chiral Ligands in Asymmetric Reactions

3.1 Asymmetric Allylic Alkylation

3.2 Asymmetric Allylic Amination

3.3 Asymmetric Allylic Alkylation with Enamines as Nucleophiles

3.4 Asymmetric Alkylation of Aryl Aldehydes

3.5 Asymmetric Hydrogenation

3.6 1,4-Asymmetric Conjugation Reactions

4 Summary

 
  • References

  • 1 Kealy TJ, Pauson PL. Nature 1951; 168: 1039
  • 2 Miller A, Tebboth JA, Tremaine F. J. Chem. Soc. 1952; 632
  • 3 Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. Togni A, Hayashi T. Willey-VCH; Weinheim: 1995
  • 4 Chiral Ferrocenes in Asymmetric Catalysis . Dai L.-X, Hou X.-L. Wiley-VCH; Weinheim: 2010

    • For reviews, see:
    • 5a Richards CJ, Locke AJ. Tetrahedron: Asymmetry 1998; 9: 2377
    • 5b Sutcliffe OB, Bryce MR. Tetrahedron: Asymmetry 2003; 14: 2297
    • 5c Ferrocene: Ligands, Materials and Biomolecules. Stepnicka P. Wiley-VCH; Weinheim: 2008
  • 6 Togni A In Metallocenes: Synthesis, Reactivity, Applications . Vol. 2. Togni A, Halterman RL. Chap. 11 Wiley-VCH; Weinheim: 1998: 685
  • 7 Hayashi T, Yamamoto A, Hojo M, Ito Y. J. Chem. Soc., Chem. Commun. 1989; 495
  • 8 Hayashi T, Yamamoto A, Hojo M, Kishi K, Ito Y. J. Organomet. Chem. 1989; 370: 129
    • 9a Zhang W, Adachi Y, Hirao T, Ikeda I. Tetrahedron: Asymmetry 1996; 7: 451 ; (part of this work was reported as a poster presentation at the 42nd Symposium on Organometallic Chemistry, Hiroshima University, Japan, October 5–6th, 1995)
    • 9b Park and co-workers have also published very similar work but with different results, see: Park J, Lee S, Ahn KH, Cho C.-W. Tetrahedron Lett. 1995; 36: 7236
    • 10a Park J, Lee S, Ahn KH, Cho C.-W. Tetrahedron Lett. 1995; 36: 7263
    • 10b Richards CJ, Damalidis T, Hibbs DE, Hursthouse MB. Synlett 1995; 74
    • 10c Sammakia T, Latham HA, Schaad DR. J. Org. Chem. 1995; 60: 10
    • 10d Nishibayashi Y, Uemura S. Synlett 1995; 79
    • 10e Sammakia T, Latham HA. J. Org. Chem. 1995; 60: 6002
  • 11 Zhang W, Hirao T, Ikeda I. Tetrahedron Lett. 1996; 37: 4545
    • 12a Zhang W, Kida T, Nakatsuji Y, Ikeda I. Tetrahedron Lett. 1996; 37: 7995
    • 12b Nelson TD, Meyers AI. J. Org. Chem. 1994; 59: 2655
  • 13 Zhang W, Shimanuki T, Kida T, Nakatsuji Y, Ikeda I. J. Org. Chem. 1999; 64: 6247
  • 14 Warshawsky AM, Meyers AI. J. Am. Chem. Soc. 1990; 112: 8090
  • 15 Xie F, Liu D, Zhang W. Tetrahedron Lett. 2008; 49: 1012

    • For reviews, see:
    • 16a Schmidt B, Seebach D. Angew. Chem. Int. Ed. Engl. 1991; 30: 1321
    • 16b Kagan Henri B, Riant O. Chem. Rev. 1992; 92: 1007
    • 16c Mikami K, Shimizu M. Chem. Rev. 1992; 92: 1021

    • For selected papers, see:
    • 16d Seebach D, Weber B. Tetrahedron 1994; 50: 7473
    • 16e Terada M, Matsumo Y, Nakamura Y, Mikami K. J. Chem. Soc., Chem. Commun. 1997; 281
  • 17 Zhang W, Yoneda Y, Kida T, Nakatsuji Y, Ikeda I. J. Organomet. Chem. 1999; 574: 19
  • 18 Zhang W, Yoshinaga H, Imai Y, Kida T, Nakatsuji Y, Ikeda I. Synlett 2000; 1512
  • 19 Hua G, Liu D, Xie F, Zhang W. Tetrahedron Lett. 2007; 48: 385
  • 20 Imai Y, Zhang W, Kida T, Nakatsuji Y, Ikeda I. Tetrahedron Lett. 1997; 38: 2681
  • 21 Hardgrove GL, Templeton DH. Acta Crystallogr. 1959; 12: 28
  • 22 Liu D, Xie F, Zhang W. Tetrahedron Lett. 2007; 48: 585
  • 23 Liu D, Xie F, Zhang W. J. Org. Chem. 2007; 72: 6992
  • 24 Liu D, Xie F, Zhao X, Zhang W. Tetrahedron 2008; 64: 3561
  • 25 Wang Y, Liu D, Meng Q, Zhang W. Tetrahedron: Asymmetry 2009; 20: 2510

    • For reviews, see:
    • 26a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 26b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 26c Guiry PJ, Saunders CP. Adv. Synth. Catal. 2004; 346: 497
    • 26d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 27a Sprinz J, Helmchen G. Tetrahedron Lett. 1993; 34: 1769
    • 27b von Matt P, Pfaltz A. Angew. Chem. Int. Ed. Engl. 1993; 32: 566
    • 27c Dawson GJ, Williams JM. J, Coote SJ. Tetrahedron: Asymmetry 1995; 6: 2535
  • 28 Quan M, Butt N, Shen J, Shen K, Liu D, Zhang W. Org. Biomol. Chem. 2013; 11: 7412
  • 29 Trost BM, Self CR. J. Org. Chem. 1984; 49: 468
  • 30 Hiroi K, Suya K, Sato S, Koyama T. J. Org. Chem. 1994; 59: 203
  • 31 Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952
  • 32 Liu D, Xie F, Zhang W. Tetrahedron Lett. 2007; 48: 7591
  • 33 Zhao X, Liu D, Xie F, Zhang W. Tetrahedron 2009; 65: 512
  • 34 Zhao X, Liu D, Xie F, Liu Y, Zhang W. Org. Biomol. Chem. 2011; 9: 1871
  • 35 Zhao X, Liu D, Guo H, Liu Y, Zhang W. J. Am. Chem. Soc. 2011; 133: 19354

    • For selected papers, see:
    • 36a Abdur-Rashid K, Faatz M, Lough J, Morris RH. J. Am. Chem. Soc. 2001; 123: 7473
    • 36b Noyori R, Ohkuma T. Angew. Chem. Int. Ed. 2001; 40: 40
    • 36c Aikawa K, Mikami K. Angew. Chem. Int. Ed. 2003; 42: 5455
    • 36d Genet J.-P. Acc. Chem. Res. 2003; 36: 908
    • 36e Genov DG, Ager DJ. Angew. Chem. Int. Ed. 2004; 43: 2816
  • 37 Guo H, Liu D, Butt N, Liu Y, Zhang W. Tetrahedron 2012; 68: 3295
  • 38 Wang J, Liu D, Liu Y, Zhang W. Org. Biomol. Chem. 2013; 11: 3855
  • 39 Liu D, Gao W, Wang C, Zhang X. Angew. Chem. Int. Ed. 2005; 44: 1687
  • 40 Geng H, Zhang X, Chang M, Zhou L, Wu W, Zhang X. Adv. Synth. Catal. 2011; 353: 3039
  • 41 Perlmutter P. Conjugate Addition Reactions in Organic Synthesis. Pergamon; Oxford: 1992

    • For reviews on 1,4-ACA and 1,6-ACA reactions, see:
    • 42a Csákÿ AG, de la Herrán G, Murcia MC. Chem. Soc. Rev. 2010; 39: 4080
    • 42b Hayashi T. Acc. Chem. Res. 2000; 33: 354
  • 43 Fillion E, Wilsily A, Liao E.-T. Tetrahedron: Asymmetry 2006; 17: 2957
  • 44 Hénon H, Mauduit M, Alexakis A. Angew. Chem. Int. Ed. 2008; 47: 9122
  • 45 Den Hartog T, Harutyunyan SR, Font D, Minnaard AJ, Feringa BL. Angew. Chem. Int. Ed. 2008; 47: 398
  • 46 Ma Z, Xie F, Yu H, Wu X, Zhang W. Chem. Commun. 2013; 49: 5292
  • 47 Harutyunyan SR, López F, Browne WR, Correa A, Peña D, Badorrey R, Meetsma A, Minnaard AJ, Feringa BL. J. Am. Chem. Soc. 2006; 128: 9103
  • 48 Cregge RJ, Durham SL, Farr RA, Gallion SL, Hare CM, Hoffman RV, Janusz MJ, Kim H.-O, Koehl JR, Mehdi S, Metz WA, Peet NP, Pelton JT, Schreuder HA, Sunder S, Tardif C. J. Med. Chem. 1998; 41: 2461
  • 49 McEvoy FJ, Lai FM, Albright JD. J. Med. Chem. 1983; 26: 381