Synlett 2014; 25(4): 495-500
DOI: 10.1055/s-0033-1340478
letter
© Georg Thieme Verlag Stuttgart · New York

A Mild and Simple Method for the Synthesis of Substituted Phenazines

Harpreet Kour
a   Department of Chemistry, University of Jammu, Jammu 180006, India   Fax: +91(191)2431365   Email: paul7@rediffmail.com
,
Satya Paul*
a   Department of Chemistry, University of Jammu, Jammu 180006, India   Fax: +91(191)2431365   Email: paul7@rediffmail.com
,
Parvinder Pal Singh
b   Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
,
Rajive Gupta
a   Department of Chemistry, University of Jammu, Jammu 180006, India   Fax: +91(191)2431365   Email: paul7@rediffmail.com
› Author Affiliations
Further Information

Publication History

Received: 04 September 2013

Accepted after revision: 23 November 2013

Publication Date:
20 December 2013 (online)


Abstract

A mild, simple, and general method has been developed for the synthesis of phenazines by cross-coupling of benzoquinones with o-phenylenediamines. Benzoquinones and o-phenylenediamines reacted smoothly to give the corresponding cross-coupled products in good to excellent yields. 1,4-Naphthoquinone also coupled with o-phenylenediamines in the presence of copper acetate at 50 °C to give the corresponding benzo[a]phenazines. All reactions could be carried out under air.

Supporting Information

 
  • References and Notes

    • 1a Handelsman J, Stabb EV. Plant Cell 1996; 8: 1855
    • 1b Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. J. Bacteriol. 2001; 183: 6454
    • 1c Zendah I, Riaz N, Nasr H, Frauendorf H, Schüffler A, Raies A, Laatsch H. J. Nat. Prod. 2012; 75: 2
    • 1d Gomez JA. G, Lage MR, Carneiro JW. de M, Resende JA. L. C, Vargas MD. J. Braz. Chem. Soc. 2013; 24: 219
    • 2a Katoh A, Yoshida T, Ohkanda J. Heterocycles 2000; 52: 911
    • 2b Geller DM. J. Biol. Chem. 1969; 224: 971
    • 2c Dailey S, Feast WJ, Peace RJ, Sage IC, Till S, Wood EL. J. Mater. Chem. 2001; 11: 2238
    • 2d Crossley MJ, Johnston LA. Chem. Commun. 2002; 1122
    • 2e Sessler JL, Maeda H, Mizuno T, Lynch VM, Furuta H. J. Am. Chem. Soc. 2002; 124: 13474
    • 2f Yamaguchi T, Matsumoto S, Watanabe K. Tetrahedron Lett. 1998; 39: 8311
    • 2g Sascha O, Rudiger F. Synlett 2004; 1509
    • 2h Yamamoto T, Sugiyama K, Kushida T, Inoue T, Kanbara T. J. Am. Chem. Soc. 1996; 118: 3930
    • 3a Ingram JM, Blackwood AC. Adv. Appl. Microbiol. 1970; 13: 267
    • 3b Giddens SR, Feng Y, Mahanty HK. Mol. Microbiol. 2002; 45: 769
    • 3c Giddens SR, Bean DC. Int. J. Antimicrob. Agents 2007; 29: 93
    • 3d Turner JM, Messenger AJ. Adv. Microb. Physiol. 1986; 27: 211
    • 3e Maul C, Sattler I, Zerlin M, Hinze C, Koch C, Maier A, Grabley S, Thiericke R. J. Antibiot. 1999; 52: 1124
    • 3f Chin-A-Woeng TF. C, Bloemberg GV, van der Bij AJ, van der Drift KM. G. F, Schripsema KJ. B, Scheffer RJ, Keel C, Bakker PA. H. M, Tichy H.-V, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJ. J. Mol.-Plant Microbe Interact. 1998; 11: 1069
  • 4 Kerr JR. Infect. Dis. Rev. 2000; 2: 184
  • 5 Laursen JB, Nielsen J. Chem. Rev. 2004; 104: 1663 ; and references cited therein
    • 6a Wohl A, Aue W. Ber. Dtsch. Chem. Ges. 1901; 34: 2442
    • 6b Bamberger E, Ham W. Justus Liebigs Ann. Chem. 1911; 82: 382
    • 6c Haddadin MJ, Issodorides CH. Tetrahedron Lett. 1965; 3253
    • 6d Ris C. Ber. Dtsch. Chem. Ges. 1886; 19: 2206
    • 6e Challand SR, Herbert RB, Holliman FG. J. Chem. Soc. D 1970; 1423
    • 6f Wolfe JP, Buchwald SL. J. Org. Chem. 1997; 62: 1264
    • 6g Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
    • 6h Hartwig JF. Acc. Chem. Res. 1998; 31: 852
    • 6i Emoto T, Kubosaki N, Yamagiwa Y, Kamikawa T. Tetrahedron Lett. 2000; 41: 355
  • 7 Kour H, Paul S, Singh PP, Gupta M, Gupta R. Tetrahedron Lett. 2013; 54: 761
  • 8 Lisboa Cda S, Santos VG, Vaz BG, de Lucas NC, Eberlin MN, Garden SJ. J. Org. Chem. 2011; 76: 5264