Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(3): 349-354
DOI: 10.1055/s-0033-1340311
DOI: 10.1055/s-0033-1340311
letter
Chiral Bis(oxazolidine)pyridine–Copper-Catalyzed Enantioselective Friedel–Crafts Alkylation of Indoles with Nitroalkenes
Further Information
Publication History
Received: 21 October 2013
Accepted after revision: 31 October 2013
Publication Date:
06 December 2013 (online)
Abstract
Catalytic asymmetric Friedel–Crafts reaction of indoles with nitroalkenes was catalyzed by the stereochemically tunable bis(oxazolidine)pyridine (PyBodine)–Cu(OTf)2 complex. Using the PyBodine(Val)–Cu(OTf)2 catalyst gave the Friedel–Crafts adducts with highly enantioselective manner. For the 1,4-bis[(E)-2-nitrovinyl]benzene, the reaction proceeded in a meso-trick manner to give the chiral double Friedel–Crafts adduct with 97% enantiomeric excess.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 Zhou Q.-L. Privileged Chiral Ligands and Catalysts . Wiley-VCH; Weinheim: 2011
- 2 Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2006; 106: 3561
- 3a Arai T, Mizukami T, Yokoyama N, Nakazato D, Yanagisawa A. Synlett 2005; 2670
- 3b Arai T, Mizukami T, Yanagisawa A. Org. Lett. 2007; 9: 1145
- 3c Arai T, Mizukami T, Mishiro A, Yanagisawa A. Heterocycles 2008; 76: 995
- 4a Arai T, Yokoyama N, Yanagisawa A. Chem. Eur. J. 2008; 14: 2052
- 4b Arai T, Yokoyama N. Angew. Chem. Int. Ed. 2008; 47: 4989
- 4c Yokoyama N, Arai T. Chem. Commun. 2009; 3285
- 4d Arai T, Yokoyama N, Mishiro A, Sato H. Angew. Chem. Int. Ed. 2010; 49: 7895
- 4e Arai T, Awata A, Wasai M, Yokoyama N, Masu H. J. Org. Chem. 2011; 76: 5450
- 4f Awata A, Arai T. Chem. Eur. J. 2012; 18: 8278
- 4g Arai T, Yamamoto Y, Awata A, Kamiya K, Ishibashi M, Arai MA. Angew. Chem. Int. Ed. 2013; 52: 2486
- 5a Arai T, Mishiro A, Yokoyama N, Suzuki K, Sato H. J. Am. Chem. Soc. 2010; 132: 5338
- 5b Arai T, Ogino Y. Molecules 2012; 17: 6170
- 5c Arai T, Mishiro A, Matsumura E, Awata A, Shirasugi M. Chem. Eur. J. 2012; 18: 11219
- 5d Arai T, Kajikawa S, Matsumura E. Synlett 2013; 24: 2045
- 6 Arai T, Ogino Y, Sato T. Chem. Commun. 2013; 49: 7776
- 7 Nishiyama H, Sakaguchi H, Nakamura T, Horihata M, Kondo M, Itoh K. Organometallics 1989; 8: 846
- 8a Bandini M, Melloni A, Umani-Ronchi A. Angew. Chem. Int. Ed. 2004; 43: 550
- 8b Bandini M, Melloni A, Tommasi S, Umani-Ronchi A. Synlett 2005; 1199
- 8c Poulsen TB, Jørgensen KA. Chem. Rev. 2008; 108: 2903
- 8d Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 8e You S.-L, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
- 8f Zeng M, You S.-L. Synlett 2010; 1289
- 8g Terrasson V, de Figueiredo RM, Campagne JM. Eur. J. Org. Chem. 2010; 2635
- 9a Ban Y, Murakami Y, Iwasawa Y, Tsuchiya M, Takano N. Med. Res. Rev. 1988; 8: 231
- 9b Somei M, Yamada F. Nat. Prod. Rep. 2003; 20: 216
- 9c Brancale A, Silvestri R. Med. Res. Rev. 2007; 27: 209
- 9d Higuchi K, Kawasaki T. Nat. Prod. Rep. 2007; 24: 843
- 10 Rohrer SP, Birzin ET, Mosley RT, Berk SC, Hutchins SM, Shen D.-M, Xiong Y, Hayes EC, Parmar RM, Foor F, Mitra SW, Degrado SJ, Shu M, Klopp JM, Cai S.-J, Blake A, Chan WW. S, Pasternak A, Yang L, Patchett AA, Smith RG, Chapman KT, Schaeffer JM. Science 1998; 282: 737
- 11 Christian OE, Compton J, Christian KR, Mooberry SL, Valeriote FA, Crews P. J. Nat. Prod. 2005; 68: 1592
- 12 Bandini M, Garelli A, Rovinetti M, Tommasi S, Umani-Ronchi A. Chirality 2005; 17: 522
- 13a Jia Y.-X, Zhu S.-F, Yang Y, Zhou Q.-L. J. Org. Chem. 2006; 71: 75
- 13b Lu S.-F, Du D.-M, Xu J. Org. Lett. 2006; 8: 2115
- 13c Yuan Z.-L, Lei Z.-Y, Shi M. Tetrahedron: Asymmetry 2008; 19: 1339
- 13d Lin S.-Z, You T.-P. Tetrahedron 2009; 65: 1010
- 13e Liu H, Du D.-M. Adv. Synth. Catal. 2010; 352: 1113
- 13f Liu H, Du D.-M. Eur. J. Org. Chem. 2010; 2121
- 13g McKeon SC, Müller-Bunz H, Guiry PJ. Eur. J. Org. Chem. 2011; 7107
- 13h Peng J, Du D.-M. Eur. J. Org. Chem. 2012; 4042
- 13i Jia Y, Yang W, Du D.-M. Org. Biomol. Chem. 2012; 10: 4739
- 13j Li C, Liu F.-L, Zou Y.-Q, Lu L.-Q, Chen J.-R, Xiao W.-J. Synthesis 2013; 45: 601
- 14a Singh PK, Bisai A, Singh VK. Tetrahedron Lett. 2007; 48: 1127
- 14b Sui Y, Liu L, Zhao J.-L, Wang D, Chen Y.-J. Tetrahedron 2007; 63: 5173
- 14c Wu J, Li X, Wu F, Wan B. Org. Lett. 2011; 13: 4834
- 15 Gao J.-R, Wu H, Xiang B, Yu W.-B, Han L, Jia Y.-X. J. Am. Chem. Soc. 2013; 135: 2983
- 16 Hao X.-Q, Xu Y.-X, Yang M.-J, Wang Li, Niu J.-L, Gong J.-F, Song M.-P. Organometallics 2012; 31: 835
- 17a Zhuang W, Hazell RG, Jørgensen KA. Org. Biomol. Chem. 2005; 3: 2566
- 17b Herrera RP, Sgarzani V, Bernardi L, Ricci A. Angew. Chem. Int. Ed. 2005; 44: 6576
- 17c Fleming EM, McCabe T, Connon SJ. Tetrahedron Lett. 2006; 47: 7037
- 17d Ganesh M, Seidel D. J. Am. Chem. Soc. 2008; 130: 16464
- 17e Itoh J, Fuchibe K, Akiyama T. Angew. Chem. Int. Ed. 2008; 47: 4016
- 17f Lin J.-H, Xiao J.-C. Eur. J. Org. Chem. 2011; 4536
- 17g Tang H.-Y, Zhang Z.-B. Phosphorus, Sulfur Silicon Relat. Elem. 2011; 186: 2038
- 18a Gupta AD, Bhuniya D, Singh VK. Tetrahedron 1994; 50: 13725
- 18b Ginotra SK, Singh VK. Tetrahedron 2006; 62: 3573
- 19 General Procedure of the Synthesis of PyBodine To a solution of 2,6-pyridine dicarboxyaldehyde (0.5 mmol) in CH2Cl2 (2 mL) was added amino alcohol (1 mmol), and the mixture was stirred at r.t. for 6 h. The resulting solution was concentrated in vacuo to afford PyBodines. Analytical Data of PyBodine(Val) (L3) 1H NMR (400 MHz, DMSO-d 6): δ = 8.06 (t, J = 7.6 Hz, 1 H), 7.76 (d, J = 7.6 Hz, 2 H), 7.44–7.36 (m, 8 H), 7.31–7.28 (m, 2 H), 7.23–7.19 (m, 4 H), 7.13–7.11 (m, 6 H), 5.54 (d, J = 12.5 Hz, 2 H), 3.89 (dd, J = 12.5, 3.4 Hz, 2 H), 3.75 (t, J = 12.5 Hz, 2 H), 1.92–1.85 (m, 2 H), 1.08 (d, J = 6.7 Hz, 6 H), 0.15 (d, J = 6.7 Hz, 6 H). 13C NMR (125 MHz, CDCl3): δ = 155.0, 146.4, 143.8, 138.1, 128.1, 127.8, 127.6, 127.5, 127.2, 126.7, 124.6, 90.2, 88.0, 73.0, 28.6, 23.3, 16.8. ESI-FTMS: m/z calcd for C41H44N3O2 + [M + H]+: 610.3428; found: 610.3434. [α]D 26 –42.9 (c 1.05, CHCl3). FTIR: 2956, 2924, 2854, 1456, 1377, 1003, 938, 813, 755, 728, 700 cm–1.
- 20 General Procedure for the Catalytic Asymmetric Friedel–Crafts Reaction (Table 3, Entry 2) PyBodine(Val) (L3, 0.011 mmol) and Cu(OAc)2 (0.01 mmol) were added to a round flask containing a stir bar under Ar. CH2Cl2 (1 mL) was added to the flask, and the mixture was stirred for 1 h. After cooling to 0 °C to the mixture was added nitroalkene (0.4 mmol), indole (0.2 mmol), and HFIP. After being stirred for appropriate time, the reaction mixture was purified by silica gel column chromatography (hexane–EtOAc; 9:1 to 2:1) to afford the Friedel–Crafts adduct. Analytical Data of 3b 1H NMR (400 MHz, CDCl3): δ = 7.99 (br s, 1 H), 7.36–7.30 (m, 4 H), 7.28–7.23 (m, 3 H), 7.02 (dd, J = 8.5 Hz, 1.4 Hz, 1 H) 6.96 (d, J = 1.8 Hz, 1 H), 5.16 (t, J = 8.4 Hz, 1 H), 5.05 (dd, J = 12.6, 8.4 Hz, 1 H), 4.93 (dd, J = 12.6, 8.4 Hz, 1 H), 2.17 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 139.2, 134.8, 129.3, 128.9, 127.7, 127.5, 126.3, 124.3, 121.8, 118.4, 113.9, 111.0, 79.5, 41.5, 21.5. ESI-FTMS: m/z calcd for C17H15N2O2 – [M – H]–: 279.1139; found: 279.1148; the enantiomeric excess was determined by HPLC with a Chiralcel OD-H column [hexane–2-PrOH (85:15), 0.7 mL/min, 254 nm]: t R (major enantiomer) = 50.0 min; t R (minor enantiomer) = 71.7 min. [α]D 20 +13.5 (c 1.0, CH2Cl2, 87% ee). FTIR: 3412, 2974, 1556, 1377 cm–1.
- 21a Laumen K, Schneider M. Tetrahedron Lett. 1984; 25: 5875
- 21b Wang Y.-F, Chen C.-S, Girdaukas G, Sih CJ. J. Am. Chem. Soc. 1984; 106: 3695
- 22 Analytical Data of 3l 1H NMR (400 MHz, acetone-d 6): δ = 10.23 (br s, 2 H), 7.51–7.46 (m, 2 H), 7.43 (s, 4 H), 7.38–7.36 (m, 4 H), 7.10–7.06 (m, 2 H), 6.97–6.93 (m, 2 H), 5.30–5.14 (m, 6 H). 13C NMR (100 MHz, acetone-d 6): δ = 140.0, 137.4, 128.7, 127.0, 122.7, 122.3, 119.6, 119.2, 114.4, 112.0, 79.8, 41.5. ESI-FTMS: m/z calcd for C26H21N4O4 – [M – H]–: 453.1568; found: 453.1588; the enantiomeric excess was determined by HPLC with a Chiralcel AD-H column [hexane–2-PrOH (80:20), 1.0 mL/min, 254 nm]: t R (major enantiomer) = 44.7 min; t R (minor enantiomer) = 48.2 min. [α]D 20 +19.0 (c 1.0, CH2Cl2, 97% ee). FTIR: 3412, 2921, 1546, 1457, 741 cm–1.
Reviews of the catalytic asymmetric Friedel–Crafts reaction: