Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(12): 1685-1691
DOI: 10.1055/s-0033-1339124
DOI: 10.1055/s-0033-1339124
letter
Highly Enantioselective Asymmetric Michael Addition Reactions with New Chiral Multisite Phase-Transfer Catalysts
Further Information
Publication History
Received: 13 March 2014
Accepted after revision: 22 April 2014
Publication Date:
12 June 2014 (online)
Abstract
Highly enantioselective Michael addition reactions of diethyl malonate to various chalcones have been achieved under mild chiral multisite phase-transfer reaction conditions by the successful utilization of 2,4,6-(triscinchoniummethyl)phenyl-1,3,5-triazines as new chiral quaternary ammonium catalysts. This simple asymmetric Michael addition process was found to be quite effective and to obtain Michael adducts with very good yields and enantiomeric excesses.
Key words
phase-transfer catalysts - Michael reaction - enantioselective reaction - quaternary ammonium salt - cinchona alkaloidSupporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Jarrouse JC. R. Hebd. Seances Acad. Sci. Ser. C 1951; 232: 1424
- 1b Freedman HH. Pure Appl. Chem. 1986; 58: 857
- 1c Starks CM, Liotta CL. Phase Transfer Catalysis. Academic Press; New York: 1978. Chap. 2
- 2a Dehmlow EV, Dehmlow SS. Phase Transfer Catalysis. VCH; Weinheim: 1993
- 2b Starks CM, Liotta CL, Halpern M. Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives. Chapman; New York: 1994
- 2c Halpern M. Phase Trans. Catal. Commun. 1997; 3: 33
- 4a Berlmutter P. Conjugate Addition Reactions in Organic Synthesis. In Tetrahedron Organic Chemistry Series. Pergamon Press; Oxford: 1992
- 4b Oare DA, Heathcock CH. Top. Stereochem. 1989; 19: 227
- 4c Rossiter BE, Swingle NM. Chem. Rev. 1992; 92: 771
- 4d Krause N, Gerold A. Angew. Chem., Int. Ed. Engl. 1997; 36: 186
- 5a Shibasaki M, Sasai H, Arai T. Angew. Chem., Int. Ed. Engl. 1997; 36: 1236
- 5b Yamaguchi M, Shiraishi T, Hirama M. Angew. Chem., Int. Ed. Engl. 1993; 52: 1176
- 6a Corey EJ, Zhang FY. Org. Lett. 2000; 2: 4257
- 6b Kim DY, Huh SC, Kim SM. Tetrahedron Lett. 2001; 42: 6299
- 7 Shishido K, Goto K, Miyoshi S, Takaishi Y, Shibuya M. J. Org. Chem. 1994; 59: 406
- 8a Nerinckx W, Vandewalle M. Tetrahedron: Asymmetry 1990; 1: 265
- 8b Diéz-Barra E, de la Hoz A, Merino S, Rodríguez A, Sánchez-Verdú P. Tetrahedron 1998; 54: 1835
- 8c Loupy A, Sansoulet J, Zaparucha A, Merienne C. Tetrahedron Lett. 1989; 30: 333
- 8d Loupy A, Zaparucha A. Tetrahedron Lett. 1993; 34: 473
- 8e Perrard T, Plaquevent J.-C, Desmurs J.-R, Hebrault D. Org. Lett. 2000; 2: 2959
- 8f Kim DY, Huh SC, Kim SM. Tetrahedron Lett. 2001; 42: 6299
- 8g Ooi T, Ohara D, Fukumoto K, Maruoka K. Org. Lett. 2005; 7: 3195
- 8h Siva A, Murugan E. J. Mol. Catal. A: Chem. 2006; 248: 1
- 9 A mixture of 2,4,6-tris-(4-bromomethylphenyl)-[1,3,5]triazine (9, 0.1 g, 10 mmol), cinchona derivatives 10a or 10b (30 mmol) was dissolved in THF (5 mL) and heated to reflux overnight, the white solid was filtered, washed with Et2O, and dried to get pure three-site chiral phase-transfer catalyst (86% yield). Triazine-Based Benzylcinchonine (11a) 1H NMR (400 MHz, DMSO-d 6): δ = 9.08 (s, 1 H), 8.97 (d, J = 7.5 Hz, 2 H), 8.48–8.37 (m, 1 H), 8.20 (d, J = 8.2 Hz, 1 H), 8.14 (d, J = 8.0 Hz, 1 H), 8.04–7.98 (m, 1 H), 7.97–7.91 (m, 1 H), 7.86 (d, J = 9.6 Hz, 2 H), 7.62 (d, J = 7.3 Hz, 2 H), 7.51 (dd, J = 20.1, 12.4 Hz, 2 H), 7.42 (dd, J = 12.7, 5.5 Hz, 1 H), 6.67–6.51 (m, 1 H), 6.07–5.83 (m, 1 H), 5.80 (dd, J = 22.9, 13.5 Hz, 1 H), 5.29 (d, J = 11.4 Hz, 1 H), 5.20–5.13 (m, 1 H), 5.10–4.91 (m, 2 H), 4.85–4.69 (m, 1 H), 4.66–4.53 (m, 1 H), 4.51–4.29 (m, 1 H), 4.10 (s, 2 H), 2.68 (s, 2 H), 2.11–1.90 (m, 2 H), 1.82 (d, J = 12.0 Hz, 2 H), 1.27 (s, 1 H). 13C NMR (125 MHz, DMSO-d 6): δ = 171.49, 150.8, 148.58, 141.57, 140.86, 138.26, 137.58, 137.36, 137.23, 135.08, 130.35, 130.21, 130.08, 129.6, 129.23, 128.97, 128.93, 128.85, 128.72, 128.58, 128.42, 128.33, 128.07, 117.16, 116.85, 116.12, 71.22, 70.97, 70.86, 68.48, 59.46, 37.32, 27.04, 26.38, 24.69. ESI-MS: m/z = 1765.00 [M]3+. Triazine-Based Allylcinchonine (11b) 1H NMR (500 MHz, DMSO-d 6): δ = 9.06 (d, J = 3.9 Hz, 1 H), 8.96 (d, J = 6.7 Hz, 2 H), 8.44 (d, J = 7.5 Hz, 1 H), 8.17 (d, J = 8.2 Hz, 1 H), 8.15–8.08 (d, J = 6.7 Hz, 2 H), 7.91 (d, J = 7.8 Hz, 1 H), 7.85–7.81 (m, 1 H), 7.74 (s, 1 H), 6.46 (s, 1 H), 6.29–6.19 (m, 1 H), 6.04 (dd, J = 17.2, 6.7 Hz, 1 H), 5.50 (d, J = 17.4 Hz, 1 H), 5.37 (d, J = 10.0 Hz, 1 H), 5.27 (t, J = 13.5 Hz, 2 H), 4.82 (s, 1 H), 4.35 (d, J = 7.1 Hz, 1 H), 4.17 (d, J = 22.3 Hz, 2 H), 4.05 (s, 2 H), 3.66 (d, J = 9.9 Hz, 1 H), 3.06 (s, 2 H), 2.70 (s, 1 H), 1.95 (s, 1 H), 1.81 (s, 3 H), 1.25 (s, 1 H). 13C NMR (125 MHz, DMSO-d 6): δ = 171.53, 150.65, 148.45, 141.16, 137.43, 137.26, 135.17, 134.66, 133.24, 130.21, 129.64, 128.0, 125.66, 124.58, 120.27, 118.49, 117.58, 73.55, 69.95, 67.55, 62.94, 56.71, 54.98, 37.0, 26.77, 23.28, 21.61. ESI-MS: m/z = 1599.9200 [M]3+.
- 10 Singh P, Arora G. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1986; 25: 1034
- 11 Siva A, Murugan E. Synthesis 2005; 2927
- 12a Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 2003; 125: 5139
- 12b Ooi T, Kameda M, Tannai H, Maruoka K. Tetrahedron Lett. 2000; 41: 8339
- 13 O’Donnell MJ, Wu S, Huffman JC. Tetrahedron 1994; 50: 4507
- 14a Lipkowitz KB, Cavanaugh MW, Baker B, O’Donnell MJ. J. Org. Chem. 1991; 56: 5181
- 14b Dolling UH, Davis P, Grabowski EJ. J. J. Am. Chem. Soc. 1984; 106: 446
- 14c Masui M, Ando A, Shioiri T. Tetrahedron Lett. 1988; 29: 2835