Synlett 2014; 25(12): 1685-1691
DOI: 10.1055/s-0033-1339124
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Enantioselective Asymmetric Michael Addition Reactions with New Chiral Multisite Phase-Transfer Catalysts

Sivamani Jayaraman
Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India   Fax: +91(452)2459181   Email: drasiva@gmail.com
,
Duraimurugan Kumaraguru
Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India   Fax: +91(452)2459181   Email: drasiva@gmail.com
,
Jesin Beneto Arockiam
Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India   Fax: +91(452)2459181   Email: drasiva@gmail.com
,
Subha Paulpandian
Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India   Fax: +91(452)2459181   Email: drasiva@gmail.com
,
Balasaravanan Rajendiran
Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India   Fax: +91(452)2459181   Email: drasiva@gmail.com
,
Ayyanar Siva*
Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India   Fax: +91(452)2459181   Email: drasiva@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 13 March 2014

Accepted after revision: 22 April 2014

Publication Date:
12 June 2014 (online)


Abstract

Highly enantioselective Michael addition reactions of diethyl malonate to various chalcones have been achieved under mild chiral multisite phase-transfer reaction conditions by the successful utilization of 2,4,6-(triscinchoniummethyl)phenyl-1,3,5-triazines as new chiral quaternary ammonium catalysts. This simple asymmetric Michael addition process was found to be quite effective and to obtain Michael adducts with very good yields and enantiomeric excesses.

Supporting Information

 
  • References and Notes

    • 1a Jarrouse JC. R. Hebd. Seances Acad. Sci. Ser. C 1951; 232: 1424
    • 1b Freedman HH. Pure Appl. Chem. 1986; 58: 857
    • 1c Starks CM, Liotta CL. Phase Transfer Catalysis. Academic Press; New York: 1978. Chap. 2
    • 2a Dehmlow EV, Dehmlow SS. Phase Transfer Catalysis. VCH; Weinheim: 1993
    • 2b Starks CM, Liotta CL, Halpern M. Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives. Chapman; New York: 1994
    • 2c Halpern M. Phase Trans. Catal. Commun. 1997; 3: 33
    • 3a Makosza M. ARKIVOC 2006; (iv): 7
    • 3b Yadav GD. Top. Catal. 2004; 29: 145
    • 4a Berlmutter P. Conjugate Addition Reactions in Organic Synthesis. In Tetrahedron Organic Chemistry Series. Pergamon Press; Oxford: 1992
    • 4b Oare DA, Heathcock CH. Top. Stereochem. 1989; 19: 227
    • 4c Rossiter BE, Swingle NM. Chem. Rev. 1992; 92: 771
    • 4d Krause N, Gerold A. Angew. Chem., Int. Ed. Engl. 1997; 36: 186
    • 5a Shibasaki M, Sasai H, Arai T. Angew. Chem., Int. Ed. Engl. 1997; 36: 1236
    • 5b Yamaguchi M, Shiraishi T, Hirama M. Angew. Chem., Int. Ed. Engl. 1993; 52: 1176
    • 6a Corey EJ, Zhang FY. Org. Lett. 2000; 2: 4257
    • 6b Kim DY, Huh SC, Kim SM. Tetrahedron Lett. 2001; 42: 6299
  • 7 Shishido K, Goto K, Miyoshi S, Takaishi Y, Shibuya M. J. Org. Chem. 1994; 59: 406
    • 8a Nerinckx W, Vandewalle M. Tetrahedron: Asymmetry 1990; 1: 265
    • 8b Diéz-Barra E, de la Hoz A, Merino S, Rodríguez A, Sánchez-Verdú P. Tetrahedron 1998; 54: 1835
    • 8c Loupy A, Sansoulet J, Zaparucha A, Merienne C. Tetrahedron Lett. 1989; 30: 333
    • 8d Loupy A, Zaparucha A. Tetrahedron Lett. 1993; 34: 473
    • 8e Perrard T, Plaquevent J.-C, Desmurs J.-R, Hebrault D. Org. Lett. 2000; 2: 2959
    • 8f Kim DY, Huh SC, Kim SM. Tetrahedron Lett. 2001; 42: 6299
    • 8g Ooi T, Ohara D, Fukumoto K, Maruoka K. Org. Lett. 2005; 7: 3195
    • 8h Siva A, Murugan E. J. Mol. Catal. A: Chem. 2006; 248: 1
  • 9 A mixture of 2,4,6-tris-(4-bromomethylphenyl)-[1,3,5]triazine (9, 0.1 g, 10 mmol), cinchona derivatives 10a or 10b (30 mmol) was dissolved in THF (5 mL) and heated to reflux overnight, the white solid was filtered, washed with Et2O, and dried to get pure three-site chiral phase-transfer catalyst (86% yield). Triazine-Based Benzylcinchonine (11a) 1H NMR (400 MHz, DMSO-d 6): δ = 9.08 (s, 1 H), 8.97 (d, J = 7.5 Hz, 2 H), 8.48–8.37 (m, 1 H), 8.20 (d, J = 8.2 Hz, 1 H), 8.14 (d, J = 8.0 Hz, 1 H), 8.04–7.98 (m, 1 H), 7.97–7.91 (m, 1 H), 7.86 (d, J = 9.6 Hz, 2 H), 7.62 (d, J = 7.3 Hz, 2 H), 7.51 (dd, J = 20.1, 12.4 Hz, 2 H), 7.42 (dd, J = 12.7, 5.5 Hz, 1 H), 6.67–6.51 (m, 1 H), 6.07–5.83 (m, 1 H), 5.80 (dd, J = 22.9, 13.5 Hz, 1 H), 5.29 (d, J = 11.4 Hz, 1 H), 5.20–5.13 (m, 1 H), 5.10–4.91 (m, 2 H), 4.85–4.69 (m, 1 H), 4.66–4.53 (m, 1 H), 4.51–4.29 (m, 1 H), 4.10 (s, 2 H), 2.68 (s, 2 H), 2.11–1.90 (m, 2 H), 1.82 (d, J = 12.0 Hz, 2 H), 1.27 (s, 1 H). 13C NMR (125 MHz, DMSO-d 6): δ = 171.49, 150.8, 148.58, 141.57, 140.86, 138.26, 137.58, 137.36, 137.23, 135.08, 130.35, 130.21, 130.08, 129.6, 129.23, 128.97, 128.93, 128.85, 128.72, 128.58, 128.42, 128.33, 128.07, 117.16, 116.85, 116.12, 71.22, 70.97, 70.86, 68.48, 59.46, 37.32, 27.04, 26.38, 24.69. ESI-MS: m/z = 1765.00 [M]3+. Triazine-Based Allylcinchonine (11b) 1H NMR (500 MHz, DMSO-d 6): δ = 9.06 (d, J = 3.9 Hz, 1 H), 8.96 (d, J = 6.7 Hz, 2 H), 8.44 (d, J = 7.5 Hz, 1 H), 8.17 (d, J = 8.2 Hz, 1 H), 8.15–8.08 (d, J = 6.7 Hz, 2 H), 7.91 (d, J = 7.8 Hz, 1 H), 7.85–7.81 (m, 1 H), 7.74 (s, 1 H), 6.46 (s, 1 H), 6.29–6.19 (m, 1 H), 6.04 (dd, J = 17.2, 6.7 Hz, 1 H), 5.50 (d, J = 17.4 Hz, 1 H), 5.37 (d, J = 10.0 Hz, 1 H), 5.27 (t, J = 13.5 Hz, 2 H), 4.82 (s, 1 H), 4.35 (d, J = 7.1 Hz, 1 H), 4.17 (d, J = 22.3 Hz, 2 H), 4.05 (s, 2 H), 3.66 (d, J = 9.9 Hz, 1 H), 3.06 (s, 2 H), 2.70 (s, 1 H), 1.95 (s, 1 H), 1.81 (s, 3 H), 1.25 (s, 1 H). 13C NMR (125 MHz, DMSO-d 6): δ = 171.53, 150.65, 148.45, 141.16, 137.43, 137.26, 135.17, 134.66, 133.24, 130.21, 129.64, 128.0, 125.66, 124.58, 120.27, 118.49, 117.58, 73.55, 69.95, 67.55, 62.94, 56.71, 54.98, 37.0, 26.77, 23.28, 21.61. ESI-MS: m/z = 1599.9200 [M]3+.
  • 10 Singh P, Arora G. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1986; 25: 1034
  • 11 Siva A, Murugan E. Synthesis 2005; 2927
    • 12a Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 2003; 125: 5139
    • 12b Ooi T, Kameda M, Tannai H, Maruoka K. Tetrahedron Lett. 2000; 41: 8339
  • 13 O’Donnell MJ, Wu S, Huffman JC. Tetrahedron 1994; 50: 4507
    • 14a Lipkowitz KB, Cavanaugh MW, Baker B, O’Donnell MJ. J. Org. Chem. 1991; 56: 5181
    • 14b Dolling UH, Davis P, Grabowski EJ. J. J. Am. Chem. Soc. 1984; 106: 446
    • 14c Masui M, Ando A, Shioiri T. Tetrahedron Lett. 1988; 29: 2835
    • 15a Whitesell J, Bhattacharya A, Buchanan CH, Chen H.-H, Milton MA. J. Org. Chem. 1986; 51: 551
    • 15b For a review, see: Jones GB, Chapman BJ. Synthesis 1995; 475