Synthesis 2013; 45(23): 3259-3262
DOI: 10.1055/s-0033-1338531
paper
© Georg Thieme Verlag Stuttgart · New York

Highly Efficient Synthesis of Allopurinol Locked Nucleic Acid Monomer by C6 Deamination of 8-Aza-7-bromo-7-deazaadenine Locked Nucleic Acid Monomer

Tamer Kosbar
a   Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark   Fax: +45 66158780   Email: erik@sdu.dk
,
Mamdouh Sofan
b   Department of Chemistry, Faculty of Science, Damietta University, 34517 New Damietta, Damietta, Egypt
,
Laila Abou-Zeid
c   Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
,
Mohamed Waly
b   Department of Chemistry, Faculty of Science, Damietta University, 34517 New Damietta, Damietta, Egypt
,
Erik B. Pedersen*
a   Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark   Fax: +45 66158780   Email: erik@sdu.dk
› Author Affiliations
Further Information

Publication History

Received: 26 June 2013

Accepted after revision: 22 August 2013

Publication Date:
13 September 2013 (online)


Abstract

An allopurinol locked nucleic acid (LNA) monomer was prepared by a novel strategy through C6 deamination of the corresponding 8-aza-7-bromo-7-deazaadenine LNA monomer with aqueous sodium hydroxide. An 8-aza-7-deazaadenine LNA monomer was also synthesized by a modification of the new synthetic pathway. N-Glycosylation at the 8-position was prevented by steric hindrance from the 7-bromo atom in the starting material 8-aza-7-bromo-7-deazaadenine. In the final step of the synthesis, the bromine was removed together with a benzyl protecting group by catalytic reduction with ammonium formate to give the required LNA monomers.

Supporting Information

 
  • References

    • 1a Uhlmann E, Peyman A. Chem. Rev. 1990; 90: 543
    • 1b Beaucage SL, Iyer RP. Tetrahedron 1993; 49: 6123
    • 1c Freier SM, Altmann KH. Nucleic Acids Res. 1997; 25: 4429
    • 2a Herdewijn P. Liebigs Ann. Chem. 1996; 1337
    • 2b Egli M. Antisense Nucleic Acid Drug Dev. 1998; 8: 123
    • 3a Tarköy M, Bolli M, Schweizer B, Leumann C. Helv. Chim. Acta 1993; 76: 481
    • 3b Altmann KH, Kesselring R, Francotte E, Rihs G. Tetrahedron Lett. 1994; 35: 2331
    • 3c Christensen NK, Petersen M, Nielsen P, Jacobsen JP, Olsen CE, Wengel J. J. Am. Chem. Soc. 1998; 120: 5458
    • 3d Steffens R, Leumann CJ. J. Am. Chem. Soc. 1997; 119: 11548
    • 4a Singh SK, Nielsen P, Koshkin AA, Wengel J. Chem. Commun. 1998; 455
    • 4b Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J. Tetrahedron 1998; 54: 3607
    • 4c Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, Imanishi T. Tetrahedron Lett. 1998; 39: 5401
    • 4d Koshkin AA, Nielsen P, Meldgaard M, Rajwanshi VK, Singh SK, Wengel J. J. Am. Chem. Soc. 1998; 120: 13252
    • 4e Wengel J. Acc. Chem. Res. 1999; 32: 301
    • 4f Obika S, Hari Y, Sugimoto T, Sekiguchi M, Imanishi T. Tetrahedron Lett. 2000; 41: 8923
    • 4g Koshkin AA, Fensholdt J, Pfundheller HM, Lomholt C. J. Org. Chem. 2001; 66: 8504
  • 5 Kierzek E, Mathews DH, Ciesielska A, Turner DH, Kierzek R. Nucleic Acids Res. 2006; 34: 3609
  • 6 Obika S, Nanbu D, Hari Y, Morio K, In Y, Ishida T, Imanishi T. Tetrahedron Lett. 1997; 38: 8735
  • 7 Pasternak A, Kierzek E, Pasternak K, Turner DH, Kierzek R. Nucleic Acids Res. 2007; 35: 4055
  • 8 Seela F, Kaiser K. Helv. Chim. Acta 1988; 71: 1813
  • 9 Seela F, Zulauf M. J. Chem. Soc., Perkin Trans. 1 1999; 479
  • 10 Cuny E, Lichtenthaler FW. Nucleic Acids Res., Spec. Publ. 1975; 1: 25
  • 11 Lichtenthaler FW, Cuny E. Chem. Ber. 1981; 114: 1610
  • 12 Schmidt RR, Guillard W, Karg J. Chem. Ber. 1977; 110: 2445
  • 13 Seela F, Steker H. Helv. Chim. Acta 1985; 68: 563
  • 14 Seela F, Steker H. J. Chem. Soc., Perkin Trans. 1 1985; 2573
  • 15 Cottam HB, Revankar GR, Robins RK. Nucleic Acids Res. 1983; 11: 871
  • 16 Pasternak A, Kierzek R, Gdaniec Z, Gdaniec M. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2008; 64: o467
  • 17 Seela F, Xu K. Org. Biomol. Chem. 2007; 5: 3034
  • 18 Leonova TS, Yashunskii VG. Khim. Geterotsikl. Soedin. 1982; 7: 982
  • 19 Erion MD, Reddy MR. J. Am. Chem. Soc. 1998; 120: 3295
  • 20 Evans B, Wolfenden R. Biochemistry 1973; 12: 392
  • 21 Agarwal RP, Sagar SM, Parks RE. Jr. Biochem. Pharmacol. 1975; 24: 693
  • 22 Albert A. Adv. Heterocycl. Chem. 1976; 20: 117
  • 23 Shewach DS, Krawczyk SH, Acevedo OL, Townsend LB. Biochem. Pharmacol. 1992; 44: 1697
  • 24 Hernandez S, Ford HJr, Marquez VE. Bioorg. Med. Chem. 2002; 10: 2723
  • 25 Pokharel S, Jayalath P, Maydanovych O, Goodman RA, Wang SC, Tantillo DJ, Beal PA. J. Am. Chem. Soc. 2009; 131: 11882