Z Orthop Unfall 2013; 151(1): 25-30
DOI: 10.1055/s-0032-1328209
Osteoporose
Georg Thieme Verlag KG Stuttgart · New York

Dihydrotestosteron verbessert die knöcherne Einheilung von Kobalt-Chrom-Implantaten

Dihydrotestosterone Improves the Osseointegration of Cobalt-Chromium Implants
U. M. Maus
1   Orthopädisches Zentrum, St. Antonius-Stift, Emstek
2   Universitätsmedizin Mainz, Orthopädische Klinik
,
M. Lühmann
1   Orthopädisches Zentrum, St. Antonius-Stift, Emstek
3   Unfall-, Hand- und Wiederherstellungschirurgie, Medizinisches Zentrum StädteRegion Aachen, Würselen
,
J. A. K. Ohnsorge
1   Orthopädisches Zentrum, St. Antonius-Stift, Emstek
4   Klinik für Orthopädie und Unfallchirurgie – Schwerpunkt Orthopädie, Universitätsklinikum Aachen
,
S. Andereya
4   Klinik für Orthopädie und Unfallchirurgie – Schwerpunkt Orthopädie, Universitätsklinikum Aachen
,
H. Schmidt
3   Unfall-, Hand- und Wiederherstellungschirurgie, Medizinisches Zentrum StädteRegion Aachen, Würselen
,
G. Zombory
4   Klinik für Orthopädie und Unfallchirurgie – Schwerpunkt Orthopädie, Universitätsklinikum Aachen
,
C. Siebert
5   Abteilung für Orthopädie und Sporttraumatologie, Medizinische Hochschule Hannover – Annastift e. V.
,
C. Niedhart
4   Klinik für Orthopädie und Unfallchirurgie – Schwerpunkt Orthopädie, Universitätsklinikum Aachen
› Author Affiliations
Further Information

Publication History

Publication Date:
19 February 2013 (online)

Zusammenfassung

Hintergrund: Die knöcherne Einheilung von mittlerweile seltener eingesetzten Kobalt-Chrom-Implantaten kann insbesondere bei älteren Patienten problematisch sein. Ziel unserer Studie war es, den Effekt einer präoperativen Testosteron-Behandlung auf das knöcherne Einwachsen zu bewerten. Material und Methoden: Kobalt-Chrom-Molybdän-(CoCrMo-)Implantate von 1,6 mm Durchmesser wurden Ratten pressfit implantiert, wobei eine Gruppe (n = 10) 2 Tage präoperativ 1 mg Dihydrotestosteron (DHT) erhielt, die andere Gruppe (n = 10) blieb ohne präoperative Behandlung. Die Proben wurden nach 14 Tagen histologisch und histomorphometrisch sowie durch einen Pull-out-Test untersucht. Ergebnisse: Die biomechanischen Tests lieferten inkonsistente Daten und führten zu keinem signifikanten Unterschied (6,45 ± 6,94 N vs. 4,66 ± 3,77 N). Histologisch zeigte sich in beiden Gruppen ein geschlossener Kontakt zwischen den Implantaten und dem umgebenden Gewebe. Die Knochen/Implantat-Kontaktfläche war nach der Behandlung mit DHT signifikant erhöht (42,23 % ± 9,25 vs. 57,57 % ± 16,71, p < 0,05), der Anteil an unverkalkter Knochensubstanz (Osteoid) unterschied sich nicht signifikant zwischen den beiden Gruppen (38,68 % ± 16,7 vs. 27,38 % ± 13,02). Schlussfolgerung: Die Vorbehandlung mit DHT fördert die Osseointegration von Kobalt-Chrom-Implantaten durch eine verstärkte Mineralisierung des periimplantären Gewebes. Die Behandlung mit DHT kann zusätzlich die postoperative Rehabilitation aufgrund seiner positiven Auswirkungen auf die Muskulatur, gerade bei hypogonadalen Patienten, verkürzen.

Abstract

Background: The osseointegration of actually rarely implanted cobalt-chromium implants can be critical in an elderly population. The aim of our study was to evaluate the effect of preoperative testosterone treatment on the osseointegration of cobalt-chromium implants. Materials and Methods: Press-fit implantation of 1.6 mm-diameter cobalt-chromium-molybdenum (CoCrMo) implants was performed in rats without pre-treatment in one group (n = 10) and after pre-treatment with 1 mg dihydrotestosterone (DHT) 2 days before surgery in the other group (n = 10). After 14 days, the specimens were examined by a pull-out test, histology and histomorphometry. Results: The biomechanical testing delivered inconsistent data leading to no significant difference (6.45 ± 6.94 N vs. 4.66 ± 3.77 N). Histology showed closed contact between surrounding tissue and the implants in both groups. The bone/implant contact area was significantly enhanced after treatment with DHT (42.23 % ± 9.25 vs. 57.57 % ± 16.71, p < 0.05), while the ratio of osteoid was reduced (38.68 % ± 16.7 vs. 27.38 % ± 13.02, not significant). Conclusions: Pre-treatment with DHT enhances osseointegration of cobalt-chromium implants through enhanced mineralisation of peri-implant tissue. The treatment might additionally shorten postoperative rehabilitation due to its positive effects on musculature.

 
  • Literatur

  • 1 Song Y, Beaupre G, Goodman SB. Osseointegration of total hip arthroplasties: studies in humans and animals. J Long Term Eff Med Implants 1999; 9: 77-112
  • 2 Willert HG, Buchhorn GH. Osseointegration of cemented and noncemented implants in artificial hip replacement: long-term findings in man. J Long Term Eff Med Implants 1999; 9: 113-130
  • 3 Bobyn JD, Pilliar RM, Cameron HU et al. The optimum pore size for the fixation of porous surfaced metal implants by the ingrowth of bone. Clin Orthop 1980; 150: 263-270
  • 4 Callaghan JJ. The clinical results and basic science of total hip arthroplasty with porous-coated protheses. J Bone Joint Surg 1993; 75?A: 299-310
  • 5 Bojescul JA, Xenos JS, Callaghan JJ et al. Results of porous-coated anatomic hip arthroplasty without cement at fifteen years – a concise follow-up of a previous report. J Bone Joint Surg 2003; 85?A: 1079-1083
  • 6 Alsaadi G, Quirynen M, Komarek A et al. Impact of local and systemic factors on the incidence of oral implant failures, up to abutment connection. J Clin Periodontol 2007; 34: 610-617
  • 7 Hwang D, Wang HL. Medical contraindications to implant therapy: Part II: Relative contraindications. Implant Dent 2007; 16: 13-23
  • 8 Spangler L, Cummings P, Tencer AF et al. Biomechanical factors and failure of transcervical hip fracture repair. Injury 2001; 32: 223-228
  • 9 Szpalski M, Gunzburg R. Prevention of hip lag screw cut-out in osteoporotic patients: rationale and review of the literature. Bull Hosp Jt Dis 2001; 60: 84-88
  • 10 Gisep A, Curtis R, Flütsch S et al. Augmentation of osteoporotic bone: effect of pulsed jet-lavage on injection forces, cement distribution, and push-out strength of implants. J Biomed Mater Res B 2006; 78?B: 83-88
  • 11 Libicher M, Hillmeier J, Liegibel U et al. Osseous integration of calcium phosphate in osteoporotic fractures after kyphoplasty: initial results from a clinical and experimental pilot study. Osteoporos Int 2006; 17: 1208-1215
  • 12 Tsiridis E, Gamie Z, Conaghan PG et al. Biological options to enhance periprosthetic bone mass. Injury 2007; 38: 704-713
  • 13 Kasperk CH, Wergedal JE, Farley JR. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 1989; 124: 1576-1578
  • 14 Weisman Y, Cassorla F, Malozowski S et al. Sex-specific response of bone cells to gonadal steroids: modulation in perinatally androgenized females in testicular feminized rats. Steroids 1993; 58: 126-133
  • 15 Vanderschueren D, Van Herck E, Suiker AMH et al. Bone and mineral metabolism in aged male rats: short- and longterm effects of androgen deficiency. Endocrinology 1992; 130: 2906-2916
  • 16 Vanderschueren D, Van Herck E, Suiker AMH et al. Bone and mineral metabolism in the androgen resistant (testicular feminized) male rat. J Bone Miner Res 1993; 8: 799-807
  • 17 Davidson BJ, Ross RK, Paganini-Hill A et al. Total and free estrogens and androgens in postmenopausal women with hip fractures. J Clin Endocrinol Metab 1982; 54: 115-120
  • 18 Nordin BE, Robertson A, Seamark RF et al. The relation between calcium absorption, serum dehydroepiandrosterone and vertebral mineral density in postmenopausal women. J Clin Endocrinol Metab 1985; 60: 651-657
  • 19 Abraham D, Carpenter PC. Issues concerning androgen replacement therapy in postmenopausal women. Mayo Clin Proc 1997; 72: 1051-1055
  • 20 Baran DT, Bergfeld MA, Teitelbaum SL et al. Effect of testosterone therapy on bone formation in an osteoporotic hypogonadal male. Calcif Tissue Res 1978; 26: 103-106
  • 21 Raisz LG, Wiita B, Artis A et al. Comparison of the effects of estrogen alone and estrogen plus androgen on biomechanical markers of bone formation and resorption in postmenopausal women. J Clin Endocrinol Metab 1996; 81: 37-43
  • 22 Wang C, Eyre DR, Clark R et al. Sublingual testosterone replacement improves muscle mass and strength, decreases bone resorption, and increases bone formation markers in hypogonadal men – a clinical research center study. J Clin Endocrinol Metab 1996; 81: 3654-3662
  • 23 Frankle M, Borrelli J. The effects of testosterone propionate and methenolone enanthate on the healing of humeral osteotomies in the Wistar rat. J Invest Surg 1990; 3: 93-113
  • 24 Tarsoly E, Janossy J, Kosztura L. Effect of testosterone on fracture healing in hypophysectomized rats. Acta-Histochem 1979; 65: 25-33
  • 25 Kasperk CH, Fitzsimmons R, Strong D et al. Studies on the mechanisms whereby androgens enhance mitogenesis and differentiation in bone cells. J Clin Endocrinol Metab 1990; 71: 1322-1329
  • 26 Gruber HE, Ivey JL, Thompson ER et al. Osteoblast and osteoclast cell number and cell activity in postmenopausal osteoporosis. Mineral Electrolyte Metab 1986; 12: 246-254
  • 27 Maus U, Andereya S, Schmidt H et al. Therapy effects of testosterone on the recovery of bone defects. Z Orthop Unfall 2008; 146: 59-63
  • 28 Germain MA, Hatton A, Williams S et al. Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro. Biomaterials 2003; 24: 469-479
  • 29 Johansson CB, Han CH, Wennerberg A et al. A quantitative comparison of machined commercially pure titanium and titanium-aluminium-vanadium implants in rabbit bone. Int J Oral Maxillofac Implants 1998; 13: 315-321
  • 30 van Breda E, Menheere PP, Geurten P et al. Steroid drug delivery systems in endocrine and metabolic research: Evaluation of three models. Horm Metab Res 1995; 27: 436-437
  • 31 Dobs AS, Nguyen T, Pace C et al. Differential effects of oral estrogen versus oral estrogen-androgen replacement therapy on body composition in post menopausal women. J Clin Endocrin Metabol 2002; 87: 1509-1516
  • 32 Burr DB. Muscle strength, bone mass and age-related bone loss. J Bone Miner Res 1997; 12: 1547-1551
  • 33 Lu TW, OʼConnor JJ, Taylor SJG et al. Influence of muscle activity of the forces of the femur: comparison between in vivo measurements and calculation. Trans Orthop Res Soc 1997; 22: 721
  • 34 Rhoden EL, Morgentaler A. Risks of testosterone-replacement therapy and recommendations for monitoring. N Engl J Med 2004; 350: 482-492