Arzneimittelforschung 2012; 62(12): 583-589
DOI: 10.1055/s-0032-1327612
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Neuroprotective Action and Free Radical Scavenging Activity of Guttiferone-A, a Naturally Occurring Prenylated Benzophenone

Y. Nuñez-Figueredo
1   Centro de Investigación y Desarrollo de Medicamentos, La Habana, Cuba
,
L. García-Pupo
1   Centro de Investigación y Desarrollo de Medicamentos, La Habana, Cuba
,
J. Ramírez-Sánchez
1   Centro de Investigación y Desarrollo de Medicamentos, La Habana, Cuba
,
Y. Alcántara-Isaac
1   Centro de Investigación y Desarrollo de Medicamentos, La Habana, Cuba
,
O. Cuesta-Rubio
2   Departamento de Farmacia, Instituto de Farmacia y Alimentos, Universidad de La Habana, La Habana, Cuba
,
R. D. Hernández
1   Centro de Investigación y Desarrollo de Medicamentos, La Habana, Cuba
,
Z. Naal
3   Departamento de Física y Química, Facultad de Ciencias Farmacéuticas de Ribeirao Preto, Universidad de Sao Paulo, Ribeirao Preto, SP, Brasil
,
C. Curti
3   Departamento de Física y Química, Facultad de Ciencias Farmacéuticas de Ribeirao Preto, Universidad de Sao Paulo, Ribeirao Preto, SP, Brasil
,
G. L. Pardo-Andreu
4   Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Ciudad Habana, Cuba
› Author Affiliations
Further Information

Publication History

received 24 April 2012

accepted 17 September 2012

Publication Date:
31 October 2012 (online)

Abstract

Reactive oxygen species (ROS) are important mediators in a number of neurodegenerative diseases and molecules capable of scavenging ROS may be a feasible strategy for protecting neuronal cells. We previously demonstrated a powerful iron-chelating action of Guttiferone-A (GA), a naturally occurring polyphenol, on oxidative stress injuries initiated by iron overload. Here we addressed the neuroprotective potential of GA in hydrogen peroxide and glutamate-induced injury on rat’s primary culture of cortical neurons and PC12 cells, respectively, and antioxidant properties concerning scavenging and anti-lipoperoxidative activities in cell-free models. The decrease in cell viability induced by each of the toxins, assessed by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay, was significantly attenuated by GA. In addition, GA was found to be a potent antioxidant, as shown by (i) inhibition of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical reduction (EC50=20.0 μM), (ii) prevention against chemically or electrochemically generated superoxide radicals, (iii) inhibition of spontaneous brain lipid peroxidation and (iv) interference with the Fenton reaction. These results indicate that GA exerts neuroprotective effects against H2O2 or glutamate toxicity and its antioxidant activity, demonstrated in vitro, could be at least partly involved. They also suggest a promising potential for GA as a therapeutic agent against neurodegenerative diseases involving ROS and oxidative damage.

 
  • References

  • 1 Genestra M. Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell Signal 2007; 19: 1807-1819
  • 2 Ghosh N, Ghosh R, Mandal SC. Antioxidant protection: A promising therapeutic intervention in neurodegenerative disease. Free Radic Res 2011; 45: 888-905
  • 3 Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 2005; 38: 1433-1444
  • 4 Candelario-Jalil E. Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 2009; 10: 644-654
  • 5 Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: where are we now?. J Lab Clin Med 1992; 119: 598-620
  • 6 Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998; 56: 317-333
  • 7 Manach C, Scalbert A, Morand C et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004; 79: 727-747
  • 8 Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 2009; 53: 75-100
  • 9 Gustafson KR, Blunt JW, Munro MHG et al. The guttiferones, HIV-inhibitory benzophenones from Symphonia globulifera, Garcinia livingstonei, Garcinia ovalifolia and Clusia rosea . Tetrahedron 1992; 48: 10093-10102
  • 10 Naldoni FJ, Claudino AL, Cruz Jr JW et al. Antimicrobial activity of benzophenones and extracts from the fruits of Garcinia brasiliensis. J Med Food 2009; 12: 403-407
  • 11 Ngouela S, Lenta BN, Noungoue DT et al. Anti-plasmodial and antioxidant activities of constituents of the seed shells of Symphonia globulifera Linn f. Phytochemistry 2006; 67: 302-306
  • 12 Pardo-Andreu GL, Nunez-Figueredo Y, Tudella VG et al. The anti-cancer agent guttiferone-A permeabilizes mitochondrial membrane: ensuing energetic and oxidative stress implications. Toxicol Appl Pharmacol 2011; 253: 282-289
  • 13 Pereira IO, Marques MJ, Pavan AL et al. Leishmanicidal activity of benzophenones and extracts from Garcinia brasiliensis Mart. fruits. Phytomedicine 2010; 17: 339-345
  • 14 Williams RB, Hoch J, Glass TE et al. A novel cytotoxic guttiferone analogue from Garcinia macrophylla from the Suriname rainforest. Planta Med 2003; 69: 864-866
  • 15 Figueredo YN, Garcia-Pupo L, Cuesta Rubio O et al. A strong protective action of guttiferone-A, a naturally occurring prenylated benzophenone, against iron-induced neuronal cell damage. J Pharmacol Sci 2011; 116: 36-46
  • 16 Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems?. FEBS Lett 1978; 92: 321-326
  • 17 Tadolini B, Cabrini L, Menna C et al. Iron (III) stimulation of lipid hydroperoxide-dependent lipid peroxidation. Free Radic Res 1997; 27: 563-576
  • 18 Cuesta-Rubio O, Padron A, Castro HV et al. Aristophenones A and B. A new tautomeric pair of polyisoprenylated benzophenones from Garcinia aristata. J Nat Prod 2001; 64: 973-975
  • 19 Whittemore ER, Loo DT, Watt JA et al. A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 1995; 67: 921-932
  • 20 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
  • 21 Dorta DJ, Pigoso AA, Mingatto FE et al. Antioxidant activity of flavonoids in isolated mitochondria. Phytother Res 2008; 22: 1213-1218
  • 22 Marklund S, Marklund G. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47: 469-474
  • 23 Vasudevan D, Wendt H. Electroreduction of oxygen in aprotic media. J Electroanal Chem 1995; 392: 69-74
  • 24 Laine DF, Cheng IF. Analysis of hydrogen peroxide and an organic hydroperoxide via the electrocatalytic Fenton reaction. Microchem J 2009; 91: 78-81
  • 25 Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978; 52: 302-310
  • 26 Coyle JT, Puttfarken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993; 262: 689-695
  • 27 Marzatico F, Cafe C. Oxygen radicals and other toxic oxygen metabolites as key mediators of the central nervous system tissue injury. Funct Neurol 1993; 8: 51-66
  • 28 Kim MS, Lee JI, Lee WY et al. Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson’s disease. Phytother Res 2004; 18: 663-666
  • 29 Li S, Luo J, Wang X et al. Effects of Ginkgo biloba extracts on NMDA-activated currents in acutely isolated hippocampal neurons of the rat. Phytother Res 2011; 25: 137-141
  • 30 Ma CJ, Kim SH, Lee KY et al. ESP-102, a combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, protects against glutamate-induced toxicity in primary cultures of rat cortical cells. Phytother Res 2009; 23: 1587-1591
  • 31 Shang YZ, Qin BW, Cheng JJ et al. Prevention of oxidative injury by flavonoids from stems and leaves of Scutellaria Baicalensis Georgi in PC12 cells. Phytother Res 2006; 20: 53-57
  • 32 Hardingham GE. Coupling of NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 2009; 37: 1147-1160
  • 33 Smith RM, Martell AE. NIST critically selected stability constants of metal complexes database, Ed 5.0. Gaithersburg, MD: National Institute of Standards and Technology; 1998
  • 34 Pardo-Andreu GL, Cavalheiro RA, Dorta DJ et al. Fe(III) shifts the mitochondria permeability transition-eliciting capacity of mangiferin to protection of organelle. J Pharmacol Exp Ther 2007; 320: 646-653
  • 35 Pardo-Andreu GL, Sánchez-Baldoquín C, Avila-González R et al. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity. Pharmacol Res 2006; 54: 389-395
  • 36 Pardo-Andreu GL, Sánchez-Baldoquín C, Avila-González R et al. Fe(III) improves antioxidant and cytoprotecting activities of mangiferin. Eur J Pharmacol 2006; 547: 31-36
  • 37 Kostyuk VA, Potapovich AI, Strigunova EN et al. Experimental evidence that flavonoid metal complexes may act as mimic of superoxide dismutase. Arch Biochem Biophys 2004; 428: 204-208
  • 38 Zhao ZS, Khan S, O’Brien PJ. Catecholic iron complexes as cytoprotective superoxide scavengers against hypoxia reoxygenation injury in isolated hepatocytes. Biochem Pharmacol 1998; 56: 825-830
  • 39 Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 2011; 51: 1302-1319
  • 40 He JB, Yuan SJ, Du JQ et al. Voltammetric and spectral characterization of two flavonols for assay-dependent antioxidant capacity. Bioelectrochemistry 2009; 75: 110-116
  • 41 Yang B, Kotani A, Arai K et al. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Anal Sci 2001; 17: 599-604
  • 42 Mandel S, Youdim MBH. Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 2004; 37: 304-317
  • 43 Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur J Pharmacol 2006; 545: 51-64
  • 44 Ebrahimi A, Schluesener H. Natural polyphenols against neurodegenerative disorders: Potentials and pitfalls. Ageing Res Rev 2012; 11: 329-345
  • 45 Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 1992; 32: S22-S27
  • 46 Friberg H, Wieloch T, Castilho RF. Mitochondrial oxidative stress after global brain ischemia in rats. Neurosci Lett 2002; 334: 111-114
  • 47 Zhu X, Raina AK, Lee HG et al. Oxidative stress signalling in Alzheimer’s disease. Brain Res 2004; 1000: 32-39
  • 48 Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53: S26-S36
  • 49 Carri MT, Ferri A, Cozzolino M et al. Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 2003; 61: 365-374